
CMSC 412
PROJECT 0: PIPES

Minimum Requirements: None



TEST DISTRIBUTION

Public tests – 5 tests | 22 points

Release tests – 1 test | 5 points

Secret tests – 5 tests | 25 points

2



SYSTEM CALLS

• A system call is the programmatic way in which a computer program requests a service from the 
kernel of the operating system it is executed on.

• Calling function(pipe, read, write) in an user executable(pipe-p1.c) will end up automatically calling its 
corresponding system call (Sys_Pipe, Sys_Read, Sys_Write). Please note that binding of all system calls 
is in src/libc/fileio.c

• Flow of Pipe Create:
Pipe-p1.cfileio.csyscall.c pipe.c

3



PIPE SYSTEM CALL

• A pipe is a system call that creates a unidirectional communication link between two file descriptors.

• A file descriptor is a number that uniquely identifies an open file in a computer’s operating system.

• int Pipe(int *fd_read, int *fd_write) takes two arguments: each is a pointer to an integer location.

• When Pipe returns successfully, it would have created a pipe and filled the two location with file 
descriptors(integers), one pointing to the reading end of the pipe and the other to the writing end of the pipe

4



STRUCTS

• Struct File in vfs.h

• Struct FileOps in vfs.h

• Struct pipe: you need to create this one

5



PIPE_CREATE()
REFERRED TO AS PIPE() IN PROJECT SPEC)

• Two File double pointers (READ_FILE AND, WRITE_FILE) have been 
passed to populate the file struct.

• Create new struct File instance using Malloc() or Allocate_File()

• Initialize necessary fields in the file struct. 

• There are File_Ops defined in the pipe.c file.

• Need to have your own pipe struct to hold data and other variables of 
importance (as per your judgement). 

• The data buffer could be a fixed 32K or dynamically allocated buffer.

• Use fsData(void*) in file to point to the instance of your pipe struct

• Check for appropriate error conditions wherever necessary.

• Return 0 if successful

6



SYS_PIPE()
• This is what is called when Pipe() command is executed in the test files (user mode)

• Create the pipe (call Pipe_Create()).

• Add files to the descriptor table.

• Look at add_file_to_descriptor_table function.

• Use Copy_To_User(ulong_t destInUser, const void *srcInKernel, ulong_t bufSize) to copy the file 
descriptors to the user addresses stored in the state registers (refer to geekos slides on how to use).

• Remember the addresses in the state registers are memory addresses in user space, the code you are 
writing is in kernel space.

• Return 0 if successful, remember to check for error conditions through out this function.

7



TESTING

• At this point, your code should be able to create a pipe. 

• Try to run pipe-p1 and it should pass the first assertion without any error.

8



PIPE_READ()
(REFERRED TO AS READ() IN PROJECT SPEC)
• Goal: Reads data from the pipe into the buffer

• Inputs: num_bytes you have to read from the pipe, a buffer to copy data into and a file struct pointer (File *f) which was 
created in pipe_create.

• Check for appropriate error conditions
• pipe has writers but no data, return EWOULDBLOCK

• Pipe has no writers and no data, return 0

• Copy the data into the buffer (it s a void *)
• E.g, You can use memcpy

• If there is data, Read() returns at most as much data as it was asked for.

• If there is not enough data, return as much data as the pipe have.

• Delete the data from the pipe s buffer 
• (remove the data that user have just read out or mark the data you have read out as invalid)

• Return number of bytes copied

9



PIPE_WRITE()
(REFERRED TO AS WRITE() IN PROJECT SPEC)

• Goal: copy data from buffer into the pipe

• Same params as Read(); buffer is the source.

• Implement the buffer like a queue; write appends data, does NOT overwrite

• If there is a reader and the pipe has space for data, pipe_Write() returns the number of bytes written.

• Error conditions:

• No reader, return EPIPE

• If you choose to implement a fixed size buffer(suggested 32K)): if buffer is full, return 0

• If you choose to implement dynamically allocated buffer: if malloc() fails, return ENOMEM

10



PIPE_CLOSE()
REFERRED TO AS CLOSE() IN PROJECT SPEC

• Identify if function is called on the read side or the write side and then act appropriately by closing 
the side on which it was called.

• Destroy data if there is no reader but there is still data.

• Pipe can also be destroyed if there are no readers and no writers.

11



VFS LAYER
HOW DOES USER’S READ CALLS PIPE_READ

• The call sequence from user is the following:

• read()(src/user/pipe-p1.c)interrupt, context switchsys_read()(src/geekos/syscall.c )→
Read(src/geekos/vfs.c) Pipe_Read()(src/geekos/pipe.c) 

• You may want to read over those function after context switch to help you debug your code.

• Pay attention to how file ops are used.

• Same routine for write and close.

12



TESTING

• We provided pipe-p1, pipe-p2, and pipe-p4 programs that you can execute in GeekOS

• Check src/usr/pipe-p1.c for the test details.

• You are encouraged to write your own test.

13


	CMSC 412�Project 0: Pipes
	Test distribution	
	System Calls
	Pipe System Call
	Structs
	Pipe_Create()�referred to as Pipe() in project spec)
	Sys_pipe()
	Testing
	Pipe_Read()�(referred to as Read() in project spec)
	Pipe_Write()�(referred to as Write() in project spec)
	Pipe_Close()�referred to as Close() in project spec
	VFS Layer�How does user’s read calls pipe_read
	Testing

