Operating Systems 412

Pete Keleher

(some material from Shankar, Agrawala, Youjip Won)

Today

» Administrivia

» Motivation:
- Why study operating systems”?

> What are operating systems?

Logistics

4 Professor Peter Keleher
5146 Iribe Bldg
keleher@umd.edu
Class Webpage:
https://ceres.cs.umd.edu/412

» Communication:
Piazza
Office hours
Last resort: email me: include 412 in subject.
Do not message me on ELMS, | do not use ELMs.

Logistics

Grading
All grades will be on grades.cs.umd.edu.

Projects Reading Homeworks
We have eight (8) graded projects: We will have approximately 10 weekly reading homeworks.

PO: 5% ¢ The total will be 10%, with weight apportioned equally.
P1: 6% ¢ All are due Tuesday at noon. No late homeworks are
P2: 5% accepted.

P3: 5%
P4a: 6%
P4b: 6%
P5a: 6%
P5b: 6%

All are due Friday at midnight. Projects may be submitted up to
two days late, 10% off per day.

Exams
We have (3) exams, each 15%. There is no final exam.

Logistics

» Grading
Whole class is curved: avg is B-, stdev up/down for A-, C-
- Approximate cut-offs last year (not guaranteed)
© 85+ A-
© 75+ B-
© 65+: C-
- 60-: D/F
» Most had 40+ points (out of 50) on non-exams last

year
Must average a passing grade on the total exam score

Logistics
» Web site:

» Discussion:
» Grades:

» Gradescope:

homeworks, assignment submissions, graded exams
» Office Hours

Pete (me) IRB 5146, Tues 4:00 - 5:00: lectures, exams, logistics
TAs (hours TBD): project questions

> Geng Liu (“leo”)
> Tasnim Kabir

ELMS
Nope!

v

Some To-Dos

» Sign up for Piazza !
- If not already added

» Set up the computing environment (Project Z), and make sure you can run
and compile in Docker containers.

» Upcoming:
Homework 1 (due Tuesday, Feb 4, at noon),
Project Z:
» set up environment
> understand structure of GeekOS
> due this week
Project 0: Pipes.
This will require a great deal of code and environment exploration.
- do NOT leave until the last day
> dueFeb 7

“Three Easy Pieces”

» What are we studying?
» Design and implementation of operating systems

» What is an operating system?
» Software layer between hardware and user programs
» Provides useful abstractions:
» Virtualization
° processor, memory, storage
» Concurrency
- threads, processes, kernel
- Persistence
- file systems, hardware

“Three Easy Pieces”

» Operating systems provide useful abstractions:
» Virtualization

> each process thinks it has exclusive access to
[processor, memory, storage

» Concurrency
> threads / processes have to:
> work together (synchronize, exchange data)
» Persistence

> data is stored on file systems, which rely on a
variety of different hardware techniques to make
changes durable

Processor Virtualization

» Processors usually have many cores
> ...but many more processes
> need to map multiple process to a core
> need process to act as if it had full control of core
» CPU virtualization
- Share a core through time sharing
° give core to a process, let it run
> context switch to a different process
> Performance cost

User Space vs Kernel Space

processes

o N

Compilers Editors Photos Email

not trusted ... / N a ,Op//C&thl’]S
operating system

trusted

Schedulers VFES layer

Resource

Process Abstraction

» Instance of a running program
Memory (address space)
Instructions
Data
Registers
Program counter
Stack pointer
etc...
Caches, TLBs....
» API
Create
create a new process to run a program
Destroy
halt a runaway process
Wait
wait for process to terminate
Switching support
methods to suspend and resume
Status

Process Creation

» Load program code into memory
- Programs on disk in executable format
> OS performs load lazily
- Program code loaded as needed.
» Allocate run-time stack
> Local vars, function parameters, return addresses
» Program heap
- Dynamically allocated (malloc’d) data
» 1/0O setup
- stdin, stdout, stderr file descriptors
» Process start
- Transfer control

Process Loading

CPU Memory

1 static data
heap

Loading:
Loads on-disk program lazily
into memory.

Process States

>

14

Running

Descheduled

> Ready

A
W

Scheduled

I/O: initiate 1/0: done

Process occupying the core (processor)

Ready

Ready to run, but not assigned to a core

Blocked
Waiting for an event:
message
requested data

Blocked

Processes assigned to one or more queues depending on state

Process State Example

assume no /O, no time-slicing:

Time Processo Process; Notes

1 Running Ready

2 Running Ready

3 Running Ready

4 Running Ready Processp now done
5 - Running

6 - Running

7 - Running

8 - Running Process; now done

Figure 4.3: Tracing Process State: CPU Only

- processes run to completion before releasing CPU...

Process State Example

more realistic, with I/O:

Time Processp Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready Processg initiates I/O
4 Blocked Running Processo is blocked,
5 Blocked Running so Process: runs
6 Blocked Running
7 Ready = Running I/O done
8 Ready = Running Process; now done
9 Running -
10 Running - Processp now done

Figure 4.4: Tracing Process State: CPU and I/O

- /O completion enqueues process on ready queue
might not run immediately
still no time-slicing

