
Operating Systems 412
Pete Keleher

(some material from Shankar, Agrawala, Youjip Won) 1

 Administrivia

 Motivation:
◦ Why study operating systems?

◦ What are operating systems?

Today

2

 Professor: Peter Keleher
◦ 5146 Iribe Bldg
◦ keleher@umd.edu
◦ Class Webpage: 	
◦ https://ceres.cs.umd.edu/412

 Communication:
◦ Piazza
◦ Office hours
◦ Last resort: email me: include 412 in subject.
◦ Do not message me on ELMS, I do not use ELMs.

Logistics

3

Logistics

4

 Grading
◦ Whole class is curved: avg is B-, stdev up/down for A-, C-
◦ Approximate cut-offs last year (not guaranteed)

◦ 85+: A-
◦ 75+: B-
◦ 65+: C-
◦ 60-: D/F

 Most had 40+ points (out of 50) on non-exams last
year
◦ Must average a passing grade on the total exam score

Logistics

5

 Web site: https://ceres.cs.umd.edu/412

 Discussion: https://piazza.com/umd/spring2025/cmsc412
 Grades: https://grades.cs.umd.edu

 Gradescope: https://www.gradescope.com/courses/937579
◦ homeworks, assignment submissions, graded exams

 Office Hours
◦ Pete (me) IRB 5146, Tues 4:00 - 5:00: lectures, exams, logistics
◦ TAs (hours TBD): project questions

◦ Geng Liu (“leo”)
◦ Tasnim Kabir

 ELMS
◦ Nope!

Logistics

6

 Sign up for Piazza !
◦ If not already added

 Set up the computing environment (Project Z), and make sure you can run
and compile in Docker containers.

 Upcoming:
◦ Homework 1 (due Tuesday, Feb 4, at noon),
◦ Project Z:

◦ set up environment
◦ understand structure of GeekOS
◦ due this week

◦ Project 0: Pipes.
◦ This will require a great deal of code and environment exploration.
◦ do NOT leave until the last day
◦ due Feb 7

Some To-Dos

7

 What are we studying?
 Design and implementation of operating systems

 What is an operating system?
 Software layer between hardware and user programs
 Provides useful abstractions:

 Virtualization
◦ processor, memory, storage

 Concurrency
◦ threads, processes, kernel

◦ Persistence
◦ file systems, hardware

“Three Easy Pieces”

8

 Operating systems provide useful abstractions:
 Virtualization
◦ each process thinks it has exclusive access to

processor, memory, storage
 Concurrency
◦ threads / processes have to:

◦ work together (synchronize, exchange data)
 Persistence
◦ data is stored on file systems, which rely on a

variety of different hardware techniques to make
changes durable

“Three Easy Pieces”

9

 Processors usually have many cores
◦ …but many more processes
◦ need to map multiple process to a core
◦ need process to act as if it had full control of core

 CPU virtualization
◦ Share a core through time sharing
◦ give core to a process, let it run
◦ context switch to a different process

◦ Performance cost

Processor Virtualization

10

processes

User Space vs Kernel Space

trusted operating system

applications

11

EditorsCompilers Photos Email

Schedulers

ext3HFS+Resource
Managers

VFS layer

not trusted

 Instance of a running program
◦ Memory (address space)

◦ Instructions
◦ Data

◦ Registers
◦ Program counter
◦ Stack pointer
◦ etc…

◦ Caches, TLBs….
 API

◦ Create
◦ create a new process to run a program

◦ Destroy
◦ halt a runaway process

◦ Wait
◦ wait for process to terminate

◦ Switching support
◦ methods to suspend and resume

◦ Status

Process Abstraction

12

 Load program code into memory
◦ Programs on disk in executable format
◦ OS performs load lazily
◦ Program code loaded as needed.

 Allocate run-time stack
◦ Local vars, function parameters, return addresses

 Program heap
◦ Dynamically allocated (malloc’d) data

 I/O setup
◦ stdin, stdout, stderr file descriptors

 Process start
◦ Transfer control

Process Creation

13

Process Loading

14

code
static data

heap

stack
Process

Memory

code
static data

heap
Program

Disk

Loading:
Loads on-disk program lazily
into memory.

CPU

Process States

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate
 Running

◦ Process occupying the core (processor)
 Ready

◦ Ready to run, but not assigned to a core
 Blocked

◦ Waiting for an event:
◦ message
◦ requested data

 Processes assigned to one or more queues depending on state

◦ assume no I/O, no time-slicing:

◦ processes run to completion before releasing CPU…

Process State Example

16

◦ more realistic, with I/O:

◦ I/O completion enqueues process on ready queue
◦ might not run immediately

◦ still no time-slicing

Process State Example

17

