
Operating Systems 412
Pete Keleher

Process state

◦ more realistic, with I/O:

◦ I/O completion enqueues process on ready queue
◦ might not run immediately

◦ still no time-slicing

Process State Example

18

 A generic PCB (teaching OS called “xv6”):

Process State process control block (PCB)

19

// the information xv6 tracks about each process
// including its register context and state
struct proc {
 char *mem; // Start of process memory
 uint sz; // Size of process memory
 char *kstack; // Bottom of kernel stack
 // for this process
 enum proc_state state; // Process state
 int pid; // Process ID
 struct proc *parent; // Parent process
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 struct context context; // Switch here to run process
 struct trapframe *tf; // Trap frame for the
 // current interrupt
};

 Intel

Process State context

20

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {
 int eip; // Index pointer register
 int esp; // Stack pointer register
 int ebx; // Called the base register
 int ecx; // Called the counter register
 int edx; // Called the data register
 int esi; // Source index register
 int edi; // Destination index register
 int ebp; // Stack base pointer register
};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
 RUNNABLE, RUNNING, ZOMBIE };

 GeekOS
◦ A complete OS written at MD
◦ We’ve removed most of the interesting bits
◦ Runs on bare metal, but we use docker containers

 demo!

GeekOS

21

 OS timeshares physical CPU
◦ want program to run full speed
◦ w/o losing control…

 Limited direct execution

 Control?

How to run a program without losing control?

22

OS Program

1. Create entry on process list
2. Allocate program memory
3. Load program into memory
4. Init stack with argc / argv
5. Clear registers
6. Execute main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 Define “restricted” operations, such as
◦ I/O requests
◦ resource allocation
◦ creating and destroying processes
◦ accessing the file system

 Use protected control transfer
◦ user mode: limited applications for apps
◦ kernel mode: full access

“All Your Bases are Belong to Us”

23

 trap instructions:
◦ enter kernel
◦ raise privilege level to kernel mode

 return-from-trap instruction
◦ reduce privilege level to user mode
◦ return to calling program

How?

24

Limited Direct Execution

25

OS @ boot
(kernel mode)

Hardware

initialize trap table
- tell hardware address of table
- fill table w/ syscall handler

addresses

OS @ process startup
(kernel mode)

Hardware Program
(user mode)

- Run main()
…

- Call system
- trap into OS

- restore user regs from kernel stack
- move to user mode
- jump to main

- Create entry for process list
- Allocate memory for program
- Load program into memory
- Init user stack with argv
- Fill kernel stack with reg/PC
- return-from -trap

Limited Direct Execution

26

- Free memory of process
- Remove from process list

…
- return from main
- trap (via exit())

- restore regs from kernel stack
- move to user mode
- jump to PC after trap

- Handle trap
- Do work of syscall
- return-from-trap

- save regs to kernel stack
- move to kernel mode
- jump to trap handler

OS @ run
(kernel mode)

Hardware Program
(user mode)

(Cont.)

 How does OS regain control?
◦ cooperative:
◦ apps voluntarily yield the CPU, or
◦ OS grabs control at system calls

◦ non-cooperative
◦ timer interrupts etc.
◦ faults (divide by zero, illegal access to memory)

◦ reboot the machine

27

Limited Direct Execution

 Periodic interrupts
◦ OS starts timer during boot sequence
◦ raised every n msecs
◦ when raised:
◦ currently running process halted
◦ process state saved by kernel
◦ pre-configured OS timer interrupt handle called

◦ often used to context switch to another process

Timer Interrupts

28

 low-level assembly code:
◦ save some registers
◦ general purpose registers
◦ PC
◦ kernel stack pointer
◦ user stack pointer

◦ restore a few for next process
◦ switch to kernel stack of next process

Context Switch

29

Timer Interrupt

30

OS @ boot
(kernel mode)

Hardware

initialize trap table
remember addresses of …
- syscall handler
- timer handler
- …

start interrupt timer - start timer
- interrupt CPU in X ms

Timer Interrupt

31

OS @ run
(kernel mode) Hardware Program

(user mode)

timer interrupt
• regs(A) —> k-stack(A)
• move to kernel mode
• jump to trap handler

Process A
…

Handle the trap
Decide to context-switch
Call switch() routine:
• regs —> proc_struct(A)
• regs <— proc_struct(B)
• switch to k-stack(B)
return-from-trap (into B)

• restore regs(B) <— k-stack(B)
• move to user mode
• jump to B’s PC Process B

…

Context switch code

32

Handle_Interrupt:
 ; macro defined above to push registers and create Interrupt_State
 Save_Registers

 ; Ensure that we're using the kernel data segment
 mov ax, KERNEL_DS
 mov ds, ax
 mov es, ax

 ; Get the address of the C handler function from the
 ; table of handler functions.
 mov eax, g_interruptTable ; get address of handler table
 mov esi, [esp+REG_SKIP] ; get interrupt number
 mov ebx, [eax+esi*4] ; get address of handler function

 test ebx,ebx ; if handler is null (ebx & ebx == 0), set ZF
 jz .bail_no_handler ; if ZF, halt for debugging.

 ; Call the handler.
 ; The argument passed is a pointer to an Interrupt_State struct,
 ; which describes the stack layout for all interrupts.
 push esp ; struct Interrupt_State *
 call ebx
 add esp, 4 ; clear 1 argument

 ; If preemption is disabled, then the current thread
 ; keeps running.
 mov ebx, [APIC_BASE+APIC_ID] ;; load id of local APC (which is cpuid)
 shr ebx, 24-2 ;; id is in high 24 bits of register, but need id <<2
 cmp [g_preemptionDisabled+ebx], dword 0
 jne .tramp_restore

 ;; nspring - check if kthreadLock is; if so, skip preemption.
 ;; this is a hack. it can help, but is not reliable (we are
 ;; not acquiring the lock, but another thread might.
;;; TODO: move this into eax to leave ebx untouched to simplify the needReschedule comparison.
 mov ebx, [kthreadLock] ;; the lock value at the front of the spinlock.
 jne .tramp_restore

 ; See if we need to choose a new thread to run.
 mov ebx, [APIC_BASE+APIC_ID] ;; load id of local APC (which is cpuid)
 shr ebx, 24-2 ;; id is in high 24 bits of register, but need id <<2
 cmp [g_needReschedule+ebx], dword 0
 je .tramp_restore

 ; Put current thread back on the run queue
 Push_Current_Thread_PTR
 call Make_Runnable
 add esp, 4 ; clear 1 argument

 ; Save stack pointer in current thread context, and
 ; clear numTicks field.
 Get_Current_Thread_To_EAX
 test eax,eax
 jne .ok
 jmp .bail_null_current_thread
.tramp_restore:
 jmp .restore
.bail_no_handler:
 call Hardware_Shutdown
.ok:
 mov [eax+0], esp ; esp field
 mov [eax+4], dword 0 ; numTicks field

 ; Pick a new thread to run, and switch to its stack
 call Get_Next_Runnable
 mov ebx, eax ; save new thread into ebx
 test eax, eax ; possibly redundant setting of the flags.
 jne .ok2
 jmp .bail_null_runnable_thread
.ok2:
 Set_Current_Thread_From_EBX
 mov esp, [ebx+0] ; load esp from new thread

 ; Clear "need reschedule" flag
 mov ebx, [APIC_BASE+APIC_ID] ;; load id of local APC (which is cpuid)

 /src/geekos/lowlevel.asm

 Prevent by:
◦ disabling interrupts during interrupt processing

◦ locking mechanisms to protect kernel data
◦ necessary for performant multiple cores

Interrupts during interrupts interrupt or trap handling

33

Operating Systems 412
Pete Keleher

Scheduling

 Simplistic workload assumptions:
◦ Each job runs for the same amount of time
◦ All jobs arrive at the same time
◦ All jobs are compute-bound (no I/O)
◦ Run-time of each job known a priori

Scheduling introduction

35

 Turnaround time
◦ From job arrival to job completion

 Fairness
◦ Performance and fairness often conflict

Scheduling performance metrics

36

Tturnaround = Tcompletion − Tarrival

 First Come, First Served (FCFS)
◦ non-preemptive, easy

 Example:
◦ A ordered before B, before C
◦ Each job runs 10 seconds

Scheduling FIFO

37

0 20 40 60 80 100 120

Time (Second)

A B C

Average turnaround time = 20 seconds
10 + 20 + 30

3 =

 Why not great?
◦ convoy-ing

 Example:
◦ Assume A runs for 100 seconds, B and C still 10 seconds

Scheduling FCFS

38

Average turnaround time = 110 seconds
100 + 110 + 120

3 =

0 20 40 60 80 100 120

Time (Second)

A B C

 Shortest-Job-First
◦ always chooses shortest available job

 Example: assume A ordered last:
◦ still A runs for 100 seconds, B and C still 10 seconds
◦ still non-preemptive

Scheduling SJF

39

Average turnaround time = 50 seconds
10 + 20 + 120

3 =

0 20 40 60 80 100 120

Time (Second)

AB C

 Let’s relax assumption that jobs all arrive at the same time
◦ what could happen?

 Example:
◦ A arrives at t=0, runs for 100 seconds
◦ B, C arrive at t=10, run for 10 seconds
◦ still non-preemptive

Scheduling SJF

40

Average turnaround time = 103.3 seconds
100 + (110 − 10) + (120 − 10)

3 =

0 20 40 60 80 100 120

Time (Second)

A B C
[B,C arrive]

 Add preemption to SJF
◦ Shortest Time-to-Completion First (STCF)
◦ or Preemptive Shortest Job First (PSJF)

 New job arrives in system:
◦ compare remaining time on all jobs
◦ choose the shortest

Scheduling STCF

41

Average turnaround time = 50 seconds
120 + (20 − 10) + (30 − 10)

3 =

0 20 40 60 80 100 120

Time (Second)

A B C
[B,C arrive]

A

 New metric: response time
◦ time from job entering system, to start of first run

◦ or Preemptive Shortest Job First (PSJF)

 STCF etc. are not very good for response time
◦ Why care?
◦ How can we build a scheduler that is sensitive to response time?

Scheduling response time

42

Tresponse = Tfirst run − Tarrival

 Scheduling time-slices
◦ run job for one time slice and then switch to next job

◦ old job goes to end of ready queue
◦ time slice also called scheduling quantum
◦ mptive Shortest Job First (PSJF)

 Relies on timer interrupts to regain control
◦ Quantum is a multiple of the timer-interrupt period

 STCF etc. are not very good for response time
◦ Fair?

◦ yes
◦ Turnaround time?

◦ not really

Scheduling round robin

43

 A, B, C arrive at the same time, each to run 5 seconds

Scheduling round robin

44

0 5 10 15 20 25 30
Time (Second)

A B C

SJF (Bad for Response Time)

0 5 10 15 20 25 30
Time (Second)

A B C

RR with a time-slice of 1sec (Good for Response Time)

A B CA B CA B CA B C

Tavg response = 0 + 5 + 10
3 = 5 sec

Tavg response = 0 + 1 + 2
3 = 1 sec

Scheduling time slices

45

It’s a tradeoff….

 shorter time-slices
◦ better response time
◦ context switching overhead goes up

 Longer time-slices
◦ Cost of switching amortized over more time
◦ Worse response time

Scheduling incorporating I/O

46

Let’s allow processes to perform synchronous (blocking) I/O

 When a job initiates an I/O request:
◦ Job is blocked waiting for I/O completion
◦ Scheduler chooses another job to run

 When I/O completes:
◦ Interrupt is raised
◦ OS moves process to ready state/queue

 Example:
◦ A and B need 50 ms of CPU time each
◦ A repeatedly runs for 10ms, then issues I/O request

◦ assume 10 ms to satisfy requests
◦ B needs 50ms CPU time, performs no I/O

Scheduling incorporating I/O

47

0 20 40 60 80 100 120
Time (msec)

A B

Poor Use of Resources

140

A A A A B B B B

0 20 40 60 80 100 120
Time (msec)

A B

Overlap Allows Better Use of Resources

140

A A A AB B B B

disk

cpu

disk

cpu STCF and
treat each time slice
as distinct job

