Operating Systems 412

Pete Keleher

Process state

Process State Example

- more realistic, with I/O:

Time Processy Process; Notes

1 Running Ready

2 Running Ready

3 Running Ready Processg initiates I/O
4 Blocked Running Processo is blocked,
5 Blocked Running so Process; runs
6 Blocked Running

7 Ready = Running I/O done

8 Ready = Running Process; now done
9 Running -
10 Running - Processg now done

Figure 4.4: Tracing Process State: CPU and I/O

- /O completion enqueues process on ready queue
might not run immediately
still no time-slicing

Process State process control block (PCB)
» A generic PCB (teaching OS called “xv6”):

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack
// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt

}s

Process State context

» Intel

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register

int edi; // Destination index register
int ebp; // Stack base pointer register

bi
// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

20

GeekOS

» GeekOS
- A complete OS written at MD
- We’ve removed most of the interesting bits
> Runs on bare metal, but we use docker containers

» demo!

21

How to run a program without osing control?

» OS timeshares physical CPU
- want program to run full speed
> w/o losing contral...

» Limited direct execution

(0133 Program

1. Create entry on process list
2. Allocate program memory
3. Load program into memory
4, Init stack with argc / argv
5. Clear registers

6. Execute main ()

7. Runmain ()

8. Execute return frommain ()
9. Free memory of process
10. Remove from process list

» Control?

22

“All Your Bases are Belong to Us”

» Define “restricted” operations, such as
- 1/O requests
> resource allocation
° creating and destroying processes
> accessing the file system
» Use protected control transfer
> user mode: limited applications for apps
- kernel mode: full access

How"?

» trap instructions:
> enter kernel
© raise privilege level to kernel mode

» return-from-trap instruction
> reduce privilege level to user mode
> return to calling program

Limited Direct Execution

0OS @ boot
(kernel mode)

Hardware

initialize trap table

OS @ process startup
(kernel mode)

- tell hardware address of table
- fill table w/ syscall handler
addresses

Hardware Program
(user mode)

- Create entry for process list
- Allocate memory for program
- Load program into memory

- Init user stack with argv

Fill kernel stack with reg/PC
return-from -trap

- restore user regs from kernel stack
- move to user mode
- jump to main

- Run main()
- C.e;l.l system
- trap into OS 2
Limited Direct Execution
0OS @ run Hardware Program

(kernel mode)

(user mode)

Handle trap
- Do work of syscall
- return-from-trap

Free memory of process
- Remove from process list

(Cont.)

- save regs to kernel stack
- move to kernel mode
- jump to trap handler

- restore regs from kernel stack
- move to user mode
- jump to PC after trap

- return from main
- trap (viaexit ())

Limited Direct Execution

» How does OS regain control?
° cooperative:
> apps voluntarily yield the CPU, or
- OS grabs control at system calls

° noNn-cooperative
o timer interrupts etc.

- faults (divide by zero, illegal access to memory)

> reboot the machine

Timer Interrupts

» Periodic interrupts
- OS starts timer during boot sequence
° raised every n msecs
> when raised:
> currently running process halted
° process state saved by kernel
- pre-configured OS timer interrupt handle called
- often used to context switch to another process

Context Switch

» low-level assembly code:

© save some registers
° general purpose registers
- PC
- kernel stack pointer
°user stack pointer

> restore a few for next process

- switch to kernel stack of next process

29

Timer Interrupt

0OS @ boot

Hardware
(kernel mode) W

initialize trap table
remember addresses of ...
- syscall handler
- timer handler

start interrupt timer - start timer
- interrupt CPU in X ms

30

imer Interrupt

0OS @ run Hardware Program
(kernel mode) (user mode)

Process A

timer interrupt

+ regs(A) —> k-stack(A)
+ move to kernel mode
+ jump to trap handler

Handle the trap

Decide to context-switch

Call switch() routine:

* regs —> proc_struct(A)

* regs <— proc_struct(B)

+ switch to k-stack(B)

return-from-trap (into B)
+ restore regs(B) <— k-stack(B)
* move to user mode

o to B’s PC
Jump o £ Process B

31

Handle_Interrupt:
; macro defined above to push registers and create Interrupt State
Save_Registers

[
; Ensure that we're using the kernel data segment
mov ax, KERNEL_DS

mov ds, ax
mov es, ax

; Get the address of the C handler function from the
; table of handler functions.

mov eax, g_interruptTable ; get address of handler table
mov esi, [eSp+REG_SKIP] ; get interrupt number

mov ebx, [eaxtesi*4] ; get address of handler function

test ebx,ebx ; if handler is null (ebx & ebx == 0), set ZF
jz .bail_no_handler ; if ZF, halt for debugging.

; Call the handler.
; The argument passed is a pointer to an Interrupt_State struct,
; which describes the stack layout for all interrupts.

push esp ; struct Interrupt State *
call ebx
add esp, 4 ; clear 1 argument

; If preemption is disabled, then the current thread
; keeps running.

nov ebx, _BASE+APIC_ID) ;7 load id of local APC (which is cpuid

shr ebx, ;7 id is in high 24 bits of register, but need id <<2
cmp [g_preemptionDisabled+ebx], dword 0

jne .tramp_restore

} ;i nspring - check if kthreadLock is; if so, skip preemption
src/geekos/lowlevel.asm 17 nopEing - chesk 4f Mehwendieck oy 4s su, Sk presmption
; not acquiring the lock, but another thread might
777 TODO: move this into eax to leave ebx untouched to simplify the needReschedule comparison.
mov ebx, [kthreadLock] i+ the lock value at the front of the spinlock
jne .tramp_restore

; See if we need to choose a new thread to run.

mov ebx, [APIC_BASE+APIC_ID] ;i load id of local ABC (which is cpuid

shr ebx, 24-2 ;i id is in high 24 bits of register, but need id <<2
cmp [g_needReschedule+ebx], dword 0
je .tramp_restore

; Put current thread back on the run queue
Push_Current_Thread PTR

call Make_Runnable

add esp, 4 ; clear 1 argument

; Save stack pointer in current thread context, and
; clear numTicks field.
Get_Current_Thread_To_EAX
test eax,eax
jne .ok
jmp .bail _null_current_thread
.tramp_restore:
jmp .restore
.bail no_handler:
call Hardware_Shutdown

Lok:
mov [eax+0], esp ; esp field
mov [eax+4], dword 0 ; numTicks field
; Pick a new thread to run, and switch to its stack
call Get_Next Runnable
mov ebx, eax ; save new thread into ebx
test eax, eax ; possibly redundant setting of the flags.
jne .ok2

jmp .bail_null_runnable_thread
Lok2:

Set_Current Thread From EBX
mov esp, [ebx+0] ; load esp from new thread

; Clear "need reschedule" flag

Interrupts during INterrupts interrupt or trap handiing
» Prevent by:

- disabling interrupts during interrupt processing

> locking mechanisms to protect kernel data
> necessary for performant multiple cores

Operating Systems 412

Pete Keleher

Scheduling

Schedulin g introduction
» Simplistic workload assumptions:
> Each job runs for the same amount of time
- All jobs arrive at the same time
> All jobs are compute-bound (no 1/0O)

> Run-time of each job known a priori

Schedulin Q performance metrics

» Turnaround time
> From job arrival to job completion

T

arrival

T

Tturnaround = Lcompletion —

» Fairness
- Performance and fairness often conflict

Scheduling Fro

» First Come, First Served (FCFS)
non-preemptive, easy

» Example:
A ordered before B, before C

Each job runs 10 seconds

A B C
§
| I I I I 1
0 20 40 60 80 100 120
Time (Second)
: 104+ 20 + 30
Average turnaround time = — = 20 seconds

37

Scheduling rers

» Why not great?
convoy-ing
» Example:

Assume A runs for 100 seconds, B and C still 10 seconds

0 20 40 60 80 100 120

Time (Second)

, 100 + 110+ 120
Average turnaround time = 3 = 110 seconds

38

Scheduling sur

» Shortest-Job-First
always chooses shortest available job
» Example: assume A ordered last:
still A runs for 100 seconds, B and C still 10 seconds

still non-preemptive

C A

T r 1 1 1
20 40 60 80 100 120

) %//Aw

Time (Second)

, 10+ 20+ 120
Average turnaround time = 3 = 50 seconds

39

Scheduling sur

» Let’s relax assumption that jobs all arrive at the same time
what could happen?

» Example:
A arrives at t=0, runs for 100 seconds
B, C arrive at t=10, run for 10 seconds

still non-preemptive

[B,C arrive]

0 20 40 60 80 100 120
Time (Second)
100 + (110 — 10) + (120 — 10)

Average turnaround time = 3 = 103.3 seconds

40

Scheduling ster

» Add preemption to SJF
Shortest Time-to-Completion First (STCF)
or Preemptive Shortest Job First (PSJF)

» New job arrives in system:
compare remaining time on all jobs

choose the shortest

[B,C arrive]
AlB C A

r.. »~ 1 tr 1t 1 1
1] 20 40 60 80 100 120

Time (Second)

120 + (20 — 10) + (30 — 10
Average turnaround time = (3) () = 50 seconds

1

Schedulin g response time

» New metric: response time

time from job entering system, to start of first run

T, = Tﬁrst run T,

response arrival

or Preemptive Shortest Job First (PSJF)

» STCF etc. are not very good for response time
Why care?

How can we build a scheduler that is sensitive to response time?

42

Scheduling round robin

» Scheduling time-slices
run job for one time slice and then switch to next job
old job goes to end of ready queue
time slice also called scheduling quantum
mptive Shortest Job First (PSJF)

» Relies on timer interrupts to regain control

Quantum is a multiple of the timer-interrupt period

» STCF etc. are not very good for response time
Fair?
yes
Turnaround time?

not really

43

Scheduling round robin

» A, B, C arrive at the same time, each to run 5 seconds

A B C

0+5+10

1 Tavg response = T = 5 sec

I T 1
0 5 10 15 20 25 30
Time (Second)
SJF (Bad for Response Time)

ABCABCABCABCABC

0+1+4+2
2IO 2IS 3|o Tavg response — T = 1sec

Time (Second)

RR with a time-slice of 1sec (Good for Response Time)

44

Scheduling time slices

It's a tradeoff....

» shorter time-slices
better response time

context switching overhead goes up

» Longer time-slices
Cost of switching amortized over more time

Worse response time

45

Schedulin Q incorporating I/O

Let’s allow processes to perform synchronous (blocking) 1/0

» When a job initiates an 1/0O request:
Job is blocked waiting for I/O completion
Scheduler chooses another job to run

» When I/O completes:
Interrupt is raised

OS moves process to ready state/queue

» Example:
A and B need 50 ms of CPU time each
A repeatedly runs for 10ms, then issues I/O request
assume 10 ms to satisfy requests

B needs 50ms CPU time, performs no I/O

46

Schedulin Q incorporating I/O
A A A A A B B
2 11N

B B

M\

B

I T T T T
0 20 40 60 80

T T
100 120

1
140

Time (msec)
Poor Use of Resources
A B A B A B A B A B
cpu STCF and
treat each time slice
disk . as distinct job
I 1 1 1 1
0 20 40 60 80 100 120 140

Time (msec)

Overlap Allows Better Use of Resources

47

