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Scheduling

 Simple approach is single-queue multiprocessor scheduling (SQMS) 
◦ each CPU simply grabs next job from queue 
◦ need synchronization (slow) 

 Also: running process gains affinity for current CPU / core 
◦ registers 
◦ TLBs 
◦ caches 

 Assume four cores, 5 CPUs: 

 Over time, might see:

Multi-Processor Scheduling SQMS
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 W/ affinity, might see:  

◦ only E migrating among cores 

 Even so, synchronization is bottleneck has #cores scales

Multi-Processor Scheduling affinity 
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 W/ round robin, might produce following schedule: 

 MQMS provides 
◦ scalability    (especially for embarassingly parallel applications) 
◦ cache affinity

Multi-Processor Scheduling multi-queue scheduling 
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 After job C in Q0 finishes: 

 After job A in Q0 finishes:

Multi-Queue Processor Scheduling load imbalance 
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 Migration:

Multi-Queue Processor Scheduling load imbalance 
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 Trickier case: 

 Possible migration pattern: 

 Need to avoid flip-flopping

Multi-Queue Processor Scheduling load imbalance 
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 Common approach is work stealing: 
◦ an underfull source queue peeks at other target queues 
◦ if target queue is more full than the source queue, it steals one or more jobs 

 Issues 
◦ high overhead 
◦ problems scaling

Multi-Queue Processor Scheduling work stealing 
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GeekOS multi-core scheduler 
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 GeekOS scheduler 
◦ single queue  
◦ affinity for a specific CPU 
◦ searches for highest priority process w/ either: 

◦ no affinity for any CPU 
◦ affinity for the core doing the rescheduling

CPUs
ready 

• 
• 

• 
• 

• 
• 

IO 

Queuing Theory without probabilities



● Queueing system 
● servers + queues (waiting rooms) 
● customers arrive, wait, get served, depart or go to next server  
● queueing disciplines  

● non-preemptive: fifo, priority, … 
● preemptive: round-robin, multi-level feedback, ...  

● Operating systems are examples of queueing systems  
● servers: hw/sw resources (cpu, disk, req handler, …) 
● customers: PCBs, TCBs, ...  

● Given: arrival rates, service times, queueing disciplines, ...  
● Obtain: queue sizes, response times, fairness, bottlenecks, ... 

Queuing Theory without probabilities

● Consider cars traveling on a road with a turn 
● each car takes 3 seconds to go through the turn 
● at most one car can be in the turn at any time  

● N(t): # cars in the turn and waiting to enter the turn  

● Load < 1: stable w/ waits depending on burstiness 
● Load > 1: unstable, ever-increasing waits

arrival rate 1/4 
load 3/4 
uniform t 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

arrival rate 1/4 
load 3/4 
uniform

t 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

Queuing Theory without probabilities



● Assume unending stream of customers: 
● arrival rate  or X:  # arrivals per second 
● average service time S:  work needed per customer 
● average turnaround time R:  departure time D - arrival time A 
● average wait time W:  turnaround time - service time 
● throughput X: # departures per sec averaged over all time 
● average customers in system N:  waiting or busy 
● utilization U:  fraction of time server is busy 

● Typical goal 
● Given: arrival rate, avg service time, queueing discipline 
● Obtain: average turnaround time, average queue size 

● Little’s Law (for any steady-state system):  
●

λ

N = λ × R

Queuing Theory without probabilities

● System becomes empty at time 7 —> stable 
● Average turnaround time:    sec 

● Average wait time:    sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:    

● Average number customers:  

R = 3.0 + 4.0 + 4.5
3 = 11.5

3

W = 0.0 + 2.0 + 3.5
3 = 5.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 11.5

3 = 11.5
10

FCFS non-preemptive

repeats every 10 seconds
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one given the CPU, the job runs to 
completion



● System becomes empty at time 7 —> stable 
● Average turnaround time:  sec 

● Average wait time:  sec 

● Arrival rate = throughput:   arrivals/sec 

● Utilization:  

● Average number customers: 

R = 3.0 + 5.0 + 2.5
3 = 10.5

3

W = 0.0 + 3.0 + 1.5
3 = 4.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.5

3 = 10.5
10

SJF non-preemptive

repeats every 10 seconds

t
 0  1  2  3  4  5  6  7 

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

C1
arr

C2
arr

Di
4.0
7.0
5.0

Ri
3.0
5.0
2.5

Wi

0.0
3.0
1.5

C3
arr

● System becomes empty at time 7 —> stable 
● Average turnaround time:  sec 

● Average wait time:  sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:  

● Average number customers: 

R = 4.0 + 5.0 + 1.0
3 = 10.0

3

W = 1.0 + 3.0 + 0.0
3 = 4.0

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.0

3 = 10
10

SJS preemptive

repeats every 10 seconds

t
 0  1  2  3  4  5  6  7 
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1
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C1
arr

C2
arr

C3
arr

assume can reschedule each time 
job arrives or leaves



● System becomes empty at time 7 —> stable 
● Average turnaround time:   sec 

● Average wait time:  sec 

● Arrival rate = throughput:  arrivals / sec 

● Utilization:  

● Average number customers: 

R = 6.0 + 4.0 + 2.5
3 = 12.5

3

W = 3.0 + 2.0 + 1.5
3 = 6.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 12.5

3 = 12.5
10

RR preemptive

repeats every 10 seconds

t
 0  1  2  3  4  5  6  7 

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
7.0
6.0
5.0

Ri
6.0
4.0
2.5

Wi

3.0
2.0
1.5

C1
arr

C2
arr

C3
arr

new job, or job finishing quantum, 
added to end of queue, scheduling 
happens only at 1 sec intervals
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Memory



Memory
● 13 - Address Spaces 
● 15 - Address Translation 
● 16 - Segmentation 
● 17 - Free Space Management 
● 18 - Paging 
● 19 - Translation Lookaside Buffers 
● 20 - Advanced Paging 
● 21 - Swapping 
● 22 - Swapping Policy
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Memory Virtualization
● What is memory virtualization? 

● OS virtualizes its physical memory. 
● OS provides a virtual address space for each process. 
● Illusion of each process using the entire physical memory . 

● Goals: 
● transparency 
● efficiency  

● in time and space 
● protection 

● for processes as well as OS
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Early Operating Systems
● Load only one process in memory. 

● Poor utilization and efficiency

0KB

64KB

max

Operating System 
(code, data, etc.)

Current 
Program 
(code, data, etc.)

Physical Memory
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Multiprogramming and Time Sharing
● Load multiple processes in memory 

● Execute one for a short while. 
● Switch processes between them in memory. 
● Better utilization and efficiency. 

● But what about protection? 
● Errant memory accesses from other processes 

● Also: 
● fragmentation 
● shared libraries 
● not efficient if we have many small processes

0KB

64KB
Operating System 
(code, data, etc.)

Process C 
(code, data, etc.)

Free

Process B 
(code, data, etc.)

Free

Process A 
(code, data, etc.)

Physical Memory

Free

Free

128KB

192KB

256KB

320KB

384KB

448KB

512KB
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Address Space
● An abstraction of physical memory:

0KB
Program Code

(free) 

1KB

2KB

15KB

16KB

Heap

Stack

Address Space
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● Code 
● Where instructions live 

● Heap 
● Dynamically allocate memory. 

● malloc in C 
● new in object-oriented languages 

● Stack 
● Store return addresses or values. 
● Contain local variables arguments to routines.

Virtual Addresses
● Every address in a running program is virtual. 

● OS uses hardware to translate virtual addresses to physical

#include <stdio.h> 
#include <stdlib.h> 

int main(int argc, char *argv[]){ 

    printf("location of code  : %p\n", (void *) main); 
    printf("location of heap  : %p\n", (void *) malloc(1)); 
    int x = 3; 
    printf("location of stack : %p\n", (void *) &x); 

    return x; 
}
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#include <stdio.h> 
#include <stdlib.h> 

int main(int argc, char *argv[]){ 

    printf("location of code  : %p\n", (void *) main); 
    printf("location of heap  : %p\n", (void *) malloc(1)); 
    int x = 3; 
    printf("location of stack : %p\n", (void *) &x); 

    return x; 
}

Output in 64-bit Linux machine:

Virtual Addresses

location of code  : 0x40057d 
location of heap  : 0xcf2010 
location of stack : 0x7fff9ca45fcc

(free)

Code 
(Text)

Stack

stack

heap

Address Space

Data

Heap

0x400000

0xcf2000

0x7fff9ca49000

0x401000

0xd13000

0x7fff9ca28000
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Need Efficiency, and Control…
● Remember: Limited direct execution (LDE) 

● Programs run directly (not emulated) 
● Memory virtualizing, efficiency, control maintained by hardware 

support. 
● e.g., registers, TLBs (Translation Look-aside Buffers), page-

tables 

● Hardware transforms virtual addresses to physical addresses 
● Memory only addressed with physical addresses 

● The OS sets up the hardware. 
● Hardware raises interrupts when needed.
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Example: Address Translation 

● Load a value from memory 
● Increment by three 
● Store the value back into memory


● Assembly 

● Assume address of ‘x’ in ebx register. 
● Load the value at that address into eax register.
● Add 3 to eax register.
● Store the value in eax back into memory.

void func() 
 int x; 
 ... 
 x = x + 3; // this is the line of code we are interested in
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128 : movl 0x0(%ebx), %eax ; load 0+ebx into eax 
132 : addl $0x03, %eax  ; add 3 to eax register 
135 : movl %eax, 0x0(%ebx) ; store eax back to mem

• Fetch instruction at address 128 
• Execute instruction (load from address 15KB) 
• Fetch instruction at address 132 
• Execute instruction (no memory reference) 
• Fetch the instruction at address 135 
• Execute instruction (store to address 15 KB)

(free)

 3000 
Stack

stack

heap

Heap

14KB

Program Code

16KB

15KB

0KB

1KB

2KB

3KB

4KB

128 
132 
135

movl 0x0(%ebx),%eax 
addl 0x03,%eax 
movl %eax,0x0(%ebx)
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But not all programs can be at location 0 

Example: Address Translation 



A Single Relocated Process 
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One Approach base and bounds

(free)

Stack
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