
Operating Systems 412
Pete Keleher

Scheduling

 Simple approach is single-queue multiprocessor scheduling (SQMS)
◦ each CPU simply grabs next job from queue
◦ need synchronization (slow)

 Also: running process gains affinity for current CPU / core
◦ registers
◦ TLBs
◦ caches

 Assume four cores, 5 CPUs:

 Over time, might see:

Multi-Processor Scheduling SQMS

76

 W/ affinity, might see:

◦ only E migrating among cores

 Even so, synchronization is bottleneck has #cores scales

Multi-Processor Scheduling affinity

77

 W/ round robin, might produce following schedule:

 MQMS provides
◦ scalability (especially for embarassingly parallel applications)
◦ cache affinity

Multi-Processor Scheduling multi-queue scheduling

78

 After job C in Q0 finishes:

 After job A in Q0 finishes:

Multi-Queue Processor Scheduling load imbalance

79

 Migration:

Multi-Queue Processor Scheduling load imbalance

80

 Trickier case:

 Possible migration pattern:

 Need to avoid flip-flopping

Multi-Queue Processor Scheduling load imbalance

81

 Common approach is work stealing:
◦ an underfull source queue peeks at other target queues
◦ if target queue is more full than the source queue, it steals one or more jobs

 Issues
◦ high overhead
◦ problems scaling

Multi-Queue Processor Scheduling work stealing

82

GeekOS multi-core scheduler

83

 GeekOS scheduler
◦ single queue
◦ affinity for a specific CPU
◦ searches for highest priority process w/ either:

◦ no affinity for any CPU
◦ affinity for the core doing the rescheduling

CPUs
ready

•
•

•
•

•
•

IO

Queuing Theory without probabilities

● Queueing system
● servers + queues (waiting rooms)
● customers arrive, wait, get served, depart or go to next server
● queueing disciplines

● non-preemptive: fifo, priority, …
● preemptive: round-robin, multi-level feedback, ...

● Operating systems are examples of queueing systems
● servers: hw/sw resources (cpu, disk, req handler, …)
● customers: PCBs, TCBs, ...

● Given: arrival rates, service times, queueing disciplines, ...
● Obtain: queue sizes, response times, fairness, bottlenecks, ...

Queuing Theory without probabilities

● Consider cars traveling on a road with a turn
● each car takes 3 seconds to go through the turn
● at most one car can be in the turn at any time

● N(t): # cars in the turn and waiting to enter the turn

● Load < 1: stable w/ waits depending on burstiness
● Load > 1: unstable, ever-increasing waits

arrival rate 1/4
load 3/4
uniform t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

arrival rate 1/4
load 3/4
uniform

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Queuing Theory without probabilities

● Assume unending stream of customers:
● arrival rate or X: # arrivals per second
● average service time S: work needed per customer
● average turnaround time R: departure time D - arrival time A
● average wait time W: turnaround time - service time
● throughput X: # departures per sec averaged over all time
● average customers in system N: waiting or busy
● utilization U: fraction of time server is busy

● Typical goal
● Given: arrival rate, avg service time, queueing discipline
● Obtain: average turnaround time, average queue size

● Little’s Law (for any steady-state system):
●

λ

N = λ × R

Queuing Theory without probabilities

● System becomes empty at time 7 —> stable
● Average turnaround time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 3.0 + 4.0 + 4.5
3 = 11.5

3

W = 0.0 + 2.0 + 3.5
3 = 5.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 11.5

3 = 11.5
10

FCFS non-preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
4.0
6.0
7.0

Ri
3.0
4.0
4.5

Wi

0.0
2.0
3.5

C1
arr

C2
arr

C3
arr

one given the CPU, the job runs to
completion

● System becomes empty at time 7 —> stable
● Average turnaround time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals/sec

● Utilization:

● Average number customers:

R = 3.0 + 5.0 + 2.5
3 = 10.5

3

W = 0.0 + 3.0 + 1.5
3 = 4.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.5

3 = 10.5
10

SJF non-preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

C1
arr

C2
arr

Di
4.0
7.0
5.0

Ri
3.0
5.0
2.5

Wi

0.0
3.0
1.5

C3
arr

● System becomes empty at time 7 —> stable
● Average turnaround time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 4.0 + 5.0 + 1.0
3 = 10.0

3

W = 1.0 + 3.0 + 0.0
3 = 4.0

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 10.0

3 = 10
10

SJS preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
5.0
7.0
3.5

Ri
4.0
5.0
1.0

Wi

1.0
3.0
0.0

C1
arr

C2
arr

C3
arr

assume can reschedule each time
job arrives or leaves

● System becomes empty at time 7 —> stable
● Average turnaround time: sec

● Average wait time: sec

● Arrival rate = throughput: arrivals / sec

● Utilization:

● Average number customers:

R = 6.0 + 4.0 + 2.5
3 = 12.5

3

W = 3.0 + 2.0 + 1.5
3 = 6.5

3

λ = 3
10

U = 6
10

N = λ × R = 3
10 × 12.5

3 = 12.5
10

RR preemptive

repeats every 10 seconds

t
 0 1 2 3 4 5 6 7

customer Ai Si
1
2
3

1.0
2.0
2.5

3.0
2.0
1.0

Di
7.0
6.0
5.0

Ri
6.0
4.0
2.5

Wi

3.0
2.0
1.5

C1
arr

C2
arr

C3
arr

new job, or job finishing quantum,
added to end of queue, scheduling
happens only at 1 sec intervals

Operating Systems 412
Pete Keleher

Memory

Memory
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

93

Memory Virtualization
● What is memory virtualization?

● OS virtualizes its physical memory.
● OS provides a virtual address space for each process.
● Illusion of each process using the entire physical memory .

● Goals:
● transparency
● efficiency

● in time and space
● protection

● for processes as well as OS

94

Early Operating Systems
● Load only one process in memory.

● Poor utilization and efficiency

0KB

64KB

max

Operating System
(code, data, etc.)

Current
Program
(code, data, etc.)

Physical Memory

95

Multiprogramming and Time Sharing
● Load multiple processes in memory

● Execute one for a short while.
● Switch processes between them in memory.
● Better utilization and efficiency.

● But what about protection?
● Errant memory accesses from other processes

● Also:
● fragmentation
● shared libraries
● not efficient if we have many small processes

0KB

64KB
Operating System
(code, data, etc.)

Process C
(code, data, etc.)

Free

Process B
(code, data, etc.)

Free

Process A
(code, data, etc.)

Physical Memory

Free

Free

128KB

192KB

256KB

320KB

384KB

448KB

512KB

96

Address Space
● An abstraction of physical memory:

0KB
Program Code

(free)

1KB

2KB

15KB

16KB

Heap

Stack

Address Space

97

● Code
● Where instructions live

● Heap
● Dynamically allocate memory.

● malloc in C
● new in object-oriented languages

● Stack
● Store return addresses or values.
● Contain local variables arguments to routines.

Virtual Addresses
● Every address in a running program is virtual.

● OS uses hardware to translate virtual addresses to physical

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]){

 printf("location of code : %p\n", (void *) main);
 printf("location of heap : %p\n", (void *) malloc(1));
 int x = 3;
 printf("location of stack : %p\n", (void *) &x);

 return x;
}

98

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]){

 printf("location of code : %p\n", (void *) main);
 printf("location of heap : %p\n", (void *) malloc(1));
 int x = 3;
 printf("location of stack : %p\n", (void *) &x);

 return x;
}

Output in 64-bit Linux machine:

Virtual Addresses

location of code : 0x40057d
location of heap : 0xcf2010
location of stack : 0x7fff9ca45fcc

(free)

Code
(Text)

Stack

stack

heap

Address Space

Data

Heap

0x400000

0xcf2000

0x7fff9ca49000

0x401000

0xd13000

0x7fff9ca28000

99

Need Efficiency, and Control…
● Remember: Limited direct execution (LDE)

● Programs run directly (not emulated)
● Memory virtualizing, efficiency, control maintained by hardware

support.
● e.g., registers, TLBs (Translation Look-aside Buffers), page-

tables

● Hardware transforms virtual addresses to physical addresses
● Memory only addressed with physical addresses

● The OS sets up the hardware.
● Hardware raises interrupts when needed.

100

Example: Address Translation

● Load a value from memory
● Increment by three
● Store the value back into memory

● Assembly

● Assume address of ‘x’ in ebx register.
● Load the value at that address into eax register.
● Add 3 to eax register.
● Store the value in eax back into memory.

void func()
 int x;
 ...
 x = x + 3; // this is the line of code we are interested in

101

128 : movl 0x0(%ebx), %eax ; load 0+ebx into eax
132 : addl $0x03, %eax ; add 3 to eax register
135 : movl %eax, 0x0(%ebx) ; store eax back to mem

• Fetch instruction at address 128
• Execute instruction (load from address 15KB)
• Fetch instruction at address 132
• Execute instruction (no memory reference)
• Fetch the instruction at address 135
• Execute instruction (store to address 15 KB)

(free)

 3000
Stack

stack

heap

Heap

14KB

Program Code

16KB

15KB

0KB

1KB

2KB

3KB

4KB

128
132
135

movl 0x0(%ebx),%eax
addl 0x03,%eax
movl %eax,0x0(%ebx)

102

But not all programs can be at location 0

Example: Address Translation

A Single Relocated Process

(free)

Stack

stack

heap

Heap

Program Code

16KB

0KB

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Code

(allocated
but not in use)

Heap

Stack

Re
lo

ca
te

d
Pr

oc
es

s

Address Space
Physical Memory

103

One Approach base and bounds

(free)

Stack

stack

heap

Heap

Program Code

16KB

0KB

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Code

(allocated but not in
use)

Heap

Stack

Address Space
Physical Memory

32KB

physical
address
base register

16KB

bounds register

104

