
Operating Systems 412
Pete Keleher

Memory

Memory
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

101

• Fetch instruction at address 128
• Execute instruction (load from address 15KB)
• Fetch instruction at address 132
• Execute instruction (no memory reference)
• Fetch the instruction at address 135
• Execute instruction (store to address 15 KB)

(free)

 3000
Stack

stack

heap

Heap

14KB

Program Code

16KB

15KB

0KB

1KB

2KB

3KB

4KB

128
132
135

movl 0x0(%ebx),%eax
addl 0x03,%eax
movl %eax,0x0(%ebx)

102

But not all programs can be at location 0

Example: Address Translation

A Single Relocated Process

(free)

Stack

stack

heap

Heap

Program Code

16KB

0KB

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Code

(allocated
but not in use)

Heap

Stack

Re
lo

ca
te

d
Pr

oc
es

s

Address Space
Physical Memory

103

One Approach base and bounds

(free)

Stack

stack

heap

Heap

Program Code

16KB

0KB

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Code

(allocated but not in
use)

Heap

Stack

Address Space
Physical Memory

32KB

physical
address
base register

16KB

bounds register

104

Dynamic(Hardware base) Relocation
● OS decides where in physical memory a process is loaded.

● Set the base register:
physical address = virtual address + base

● Virtual addresses must not be greater than bound or negative:
0 <= virtual address < bound

105

106

Address Translation base and bounds

● Fetch instruction at address 128

● Execute this instruction
● Load from address 15KB

(free)

 3000

virtually addressed

stack

heap

Heap

14KB

Program Code

16KB

15KB

0KB

1KB

2KB

3KB

4KB

128
132
135128 : movl 0x0(%ebx), %eax

32896 = 128 + 32𝐾𝐵(𝑏𝑎𝑠𝑒)

47𝐾𝐵 = 15𝐾𝐵 + 32𝐾𝐵(𝑏𝑎𝑠𝑒)

movl 0x0(%ebx),%eax
addl 0x03,%eax
movl %eax,0x0(%ebx)

physical address = offset + base

Two ways to Use the Bounds Register

(free)

Stack

Heap

Program Code

16KB

0KB

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Code

(allocated
but not in use)

Heap

Stack

Address Space
Physical Memory

48KB16KB

bounds bounds

107

the end of the
address space

the size of the
address space

Hardware Requirements for base and bounds

● Privileged mode
● user processes should not execute privileged operations

● Base and bounds registers
● per CPU / core

● Translate virtual addresses, and check bounds
● instructions
● data

● Privileged instructions to update base/bound registers
● Ability to raise exceptions

● out-of-bound accesses

108

OS Requirements for base and bounds

● OS must intervene at three critical junctures:
● When a process starts running:

● find space for address space in physical memory

● When a process is terminated:
● reclaims the memory for use

● When context switch occurs:
● Save and store the base-and-bounds pair

109

OS Issues: single chunk of memory

● The OS must find a room for a new address space.
● free list : a list of unused ranges of physical memory

0KB

16KB

32KB

48KB

64KB

Code

(allocated but not in use)

Physical Memory

(not in use)

Heap

Stack

Operating System

(not in use)

Free list

16KB

48KB

110

What if wish to start a
new 32KB process?

New address space must
fit in free physical memory.

OS Issues: Process Termination
● OS must put memory back on the free list.

Operating System

0KB

16KB

32KB

48KB

64KB
Physical Memory

(not in use)

(not in use)

Operating System

0KB

16KB

32KB

48KB

64KB

Physical Memory

(not in use)

(not in use)

(not in use)Process A

Free list

16KB

48KB

Free list

16KB

32KB

48KB

111

OS Issues: Context Switches
● OS must save and restore base-and-bounds pair.

● In process structure or process control block (PCB)

Operating System

0KB

16KB

32KB

48KB

64KB

Physical Memory

(not in use)

Process A
Currently Running

Process B

48KB
bounds

32KB
base

Context Switch
Operating System

0KB

16KB

32KB

48KB

64KB

Physical Memory

(not in use)

Process A

Process B
Currently Running

64KB

48KB

Process A PCB

…
base : 32KB
bounds : 48KB
…

bounds

base

112

Segmentation another approach

● Segment is a contiguous portion of the address space:
● code, stack, heap, …

● Can be placed anywhere in contiguous physical memory.
● Basically base and bounds per segment

113

0KB

16KB

28KB

34KB

64KB

Code

Physical Memory

(not in use)

(not in use)

Heap

Stack

Operating System

(not in use)
32KB

Segment Base Bound
Code	 32K	 2K
Heap	 34K	 2K
Stack	 28K	 2K

Address Translation for Segments
● The offset of virtual address 100 is: 100

● The code segment starts at virtual address 0 in address space.

Segment Base Size
Code 32K 2K

0KB

2KB Program Code

4KB

16KB

32KB
100 instruction

Heap

Code

(not in use)

(not in use)

34KB

physical address
𝟏𝟎𝟎 + 𝟑𝟐𝑲 𝒐𝒓 𝟑𝟐𝟖𝟔𝟖

114
physical address = offset + base

● The offset of virtual address 4200 is 104.
● The heap segment starts at virtual address 4096 in address space.

Segment Base Size
Heap 34K 2K

32KB

Heap

Code

(not in use)

(not in use)

34KB 104 + 34K = 3490
physical address

6KB Heap

4KB

Address Space

Physical Memory

4200 heap variable

36KB

115

Address Translation for Segments

physical address = offset + base

● Explicit approach
● Chop up the address space into segments based on the top few bits of

virtual address.

● Example: virtual address 4200 (01000001101000)

Segment Descriptors

Segment ID Offset

013 112 211 310 49 8 7 6 5
00 01 00 10 00 0 0 1 1

Segment bits
Code 00
Heap 01
Stack 10
 - 11

116

Segment Descriptors
● Bits

● SEG_MASK = 0x3000(11000000000000)
● SEG_SHIFT = 12
● OFFSET_MASK = 0xFFF (00111111111111)

1 // get top 2 bits of 14-bit VA
2 Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT

3 // now get offset
4 Offset = VirtualAddress & OFFSET_MASK
5 if (Offset >= Bounds[Segment])
6 RaiseException(PROTECTION_FAULT)
7 else
8 PhysAddr = Base[Segment] + Offset
9 Register = AccessMemory(PhysAddr)

117

Referring to Stack Segment
● Stack grows backward.
● Extra hardware support needed.

● The hardware checks which way the segment grows.
● 1: positive direction, 0: negative direction

Segment Base	 Size Grows Positive?
 Code	 32K	 2K 1
 Heap	 34K	 2K 1
 Stack	 28K	 2K 0

Stack

(not in use)

(not in use)
28KB

26KB

Physical Memory

Segment Register(with Negative-Growth Support)

118
physical address = base + offset - sizeof(stack) two’s complement arithmetic

Support for Sharing
● Segments can be shared between address spaces

● Code sharing still used

● Need hardware support in form of protection bits.
● Bits indicate read, write and execute permissions.

Segment Base Size Grows Positive? Protection
 Code 32K 2K 1 Read-Execute
 Heap 34K 2K 1 Read-Write
 Stack 28K 2K 0 Read-Write

Segment Register Values(with Protection)

119

Fine-Grained and Coarse-Grained
● Coarse-Grained is small number of segments

● e.g., code, heap, stack.

● Fine-Grained segmentation allows more flexibility
● Hardware-supported segment tables

120

OS support: Fragmentation
● External Fragmentation:

● Distinct runs of free space in physical memory
● Might be 24KB free, but not in one contiguous segment.
● The OS cannot immediately satisfy the 20KB request.

● Compaction: consolidating segments in physical memory.
● Compaction is costly.

● Stop running process.
● Copy data to somewhere.
● Change segment register value.

121

Memory Compaction

0KB

16KB

32KB

48KB

64KB

Not compacted

Operating System8KB

24KB

40KB

56KB

Allocated

(not in use)

0KB

16KB

32KB

48KB

64KB

Operating System8KB

24KB

40KB

56KB

(not in use)

(not in use)

Allocated

(not in use)

Allocated

Allocated

Compacted

122

GeekOS
● segmented memory addresses

● 16-bit “segment selector”, 32-bit offset
● segment selector has:

● 1 bit: GDT or LDT
● 13 bits: index into GDT or LDT
● 2 bits: protection level of segment

● segment descriptor (from table) has:
● linear base physical address of segment: 32 bits
● limit (size) of segment: 20 bits
● descriptor privilege level (dpl): 2 bits
● type of segment (data, code, system, tss, gate): 4 bits
● present (in-memory): 1 bit
● etc.

123

● GDT
● entries point to kernel segments, optionally user segments
● entry 0 (null selector) is not used to access memory
● gdtr register points to the GDT

● LDT similar, but
● points to segments of a single process
● entry 0 can be used
● any number of LDTs can be in memory
● ldtr register points (via GDT) to currently used LDT

124

GeekOS

Virtual Memory
● 14 - Memory API
● 13 - Address Spaces
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

125

Paging
● Paging splits address space into fixed-size pages.

● vs segmentation: variable size of logical segments

● Physical memory holding a page is the page frame

● Per-process page tables
● translate virtual address to physical address.

● Flexibility:
● No assumptions on how heap and stack grow or are used

● Simplicity: ease of free-space management
● All pages and page frames are the same size
● Free lists are easy…

126

● 128-byte physical memory with eight 16-byte page frames
● 64-byte address space with 16-byte pages

0

16

32

48

64
64-byte Virtual Address Space

Paging Example

0

16 reserved for OS

page 3 of AS

(unused)

page 0 of AS

(unused)

page 2 of AS

64-Byte Physical Address Space

(unused)

page 1 of AS

32

48

64

80

96

112

128

0

1

2

3

4

5

6

7

127

page frames

Address Translation
● Two components in the virtual address

● VPN: virtual page number
● Offset: offset within the page

● Example: virtual address 21 in 64-byte address space

Va5 Va4 Va3 Va2 Va1 Va0

VPN offset

0 1 0 1 0 1

VPN offset

128

Example: Address Translation
● The virtual address 21 in 64-byte address space

0 1 0 1 0 1

VPN offset

1 1 0 1 0 1

PFN offset

1

Virtual
Address

Physical
Address

Address
Translation

129

Where Are Page Tables Stored?
● Page tables can be large…

● 32-bit address space with 4-KB pages, 20 bits for VPN
● assume entry is 4 bytes:
● page table size is 4MB of space

● Page tables for each process are stored in memory…

220 * 4 = 222 =

130

0

16

page table
3 7 5 2

page 3 of AS

(unused)

page 0 of AS

32

48

64

page frame 0 of physical memory

page frame 1

page frame 2

page frame 3

page frame 4

What Is In The Page Table?
● A page table is just a data structure that is used to map

the virtual address to physical address.
● Simplest form: a linear page table, an array

● The OS/hardware accesses a page-table entry by indexing
into the array by virtual page-number

● Common bits:
● Valid Bit: whether the particular translation is valid.
● Protection Bit: read, write, execute
● Present Bit: in physical memory or swapped out
● Dirty Bit: page modified since it brought into memory
● Reference Bit (Accessed Bit): page has been accessed

131

Example: x86 Page Table Entry

● P: present
● R/W: read/write bit
● U/S: supervisor
● A: accessed bit
● D: dirty bit
● PFN: the page frame number
● Others: mostly caching directives

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFN G PA
T

D A PC
D

PW
T

U/
S

R/
W

P

132

Paging: Too Slow
● To find a location of the desired PTE, the starting location of

the page table is needed.

● For every memory reference, paging requires the OS to
perform one extra memory reference.

133

1 // Extract the VPN from the virtual address
2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
3
4 // Form the address of the page-table entry (PTE)
5 PTEAddr = PTBR + (VPN * sizeof(PTE))
6
7 // Fetch the PTE
8 PTE = AccessMemory(PTEAddr)
9
10 // Check if process can access the page
11 if (PTE.Valid == False)
12 RaiseException(SEGMENTATION_FAULT)
13 else if (CanAccess(PTE.ProtectBits) == False)
14 RaiseException(PROTECTION_FAULT)
15 else
16 // Access is OK: form physical address and fetch
17 offset = VirtualAddress & OFFSET_MASK
18 PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19 Register = AccessMemory(PhysAddr)

Accessing Memory With Paging

134

A Memory Trace
● Example: A Simple Memory Access

● Compile and execute

● Resulting Assembly code

int array[1000];
...
for (i = 0; i < 1000; i++)
 array[i] = 0;

prompt> gcc –o array array.c –Wall –o
prompt>./array

0x1024 movl $0x0,(%edi,%eax,4)
0x1028 incl %eax
0x102c cmpl $0x03e8,%eax
0x1030 jne 0x1024

135

A Virtual(And Physical) Memory Trace
Page
Table[39]

Page Table[1]

1024

1074

1124

1174

1224

Pa
ge

 Ta
bl

e
(P

A)
Co

de
 (P

A)

4096

4146

4196

1024

1074

1124

Co
de

 (V
A)

0 10 20 30 40 50

Ar
ra

y
(P

A)

7232

7282

7132

Ar
ra

y
(V

A)

40000

40050

40100
m
o
v

m
o
v

i
n
c
l

c
m
p
l

j
n
e

Memory Access

136

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

137

● Part of the chip’s memory-management unit (MMU).
● A hardware cache of popular virtual-to-physical address

translation.

MMU

TLB

CPU

Page 0

TLB
popular v to p

Page 1
Page 2

TLB Hit

Address Translation with MMU

Physical Memory

Page n
…

Logical
Address

TLB
Lookup

Page Table
all v to p entries

TLB Miss

Physical
Address

138

● extract the virtual page number (VPN).

● check for hit in the the TLB

● extract page frame number from relevant TLB entry, form

desired physical address, and access memory

139

Basic TLB Algorithm

Basic TLB Algorithm

140

 How a TLB can improve its performance.
Example: Accessing An Array

 OFFSET
 00 04 08 12

VPN = 00

VPN = 01

VPN = 03

VPN = 04

VPN = 05

VPN = 06 a[0] a[1] a[2]

VPN = 07 a[3] a[4] a[5] a[6]

VPN = 08 a[7] a[8] a[9]

VPN = 09

VPN = 10

VPN = 11

VPN = 12

VPN = 13

VPN = 14

0: int sum = 0 ;

1: for(i=0; i<10; i++){

2: sum+=a[i];

3: }

3 TLB misses and 7 hits.
Thus TLB hit rate is 70%.

The TLB improves performance
 due to spatial locality

141

Locality
● Temporal Locality

● An instruction or data item that has been recently accessed will likely be re-
accessed soon in the future.

● Spatial Locality
● If a program accesses memory at address x, it will likely soon access

memory near x.

2nd access to same addr as first

Virtual Memory

Page 1

Page 2

Page 3

Page 4

Page 5

Page n

1st access is on page 1
2nd access different addr but also page 1

Virtual Memory

…

Page 1

Page 2

Page 3

Page 4

Page 5

Page n…
Page 6

Page 7

142

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

143

Who Handles The TLB Miss?
● Hardware handles the TLB miss entirely on CISC processors.

● The hardware know where the page tables are located
● … “walks” the page table, finding the correct entry and

extracting the desired translation, update and retry instruction.
● this is a hardware-managed TLB.

● RISC processors often manage TLBs in software.
● On a TLB miss, the hardware raises an exception

● Trap handler is code within the OS that is written with the
express purpose of handling TLB misses.

144

TLB Control Flow algorithm (OS Handled)

1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success, TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True) // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBits) == True)

5: Offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: Register = AccessMemory(PhysAddr)

8: else

9: RaiseException(PROTECTION_FAULT)

10: else // TLB Miss

11: RaiseException(TLB_MISS)

145

● The hardware would do the following:

● But might be slow, why not just use the hardware approach?

TLB entry
● TLB entries are often fully associative (any entry for any

mapping)
● A typical TLB might have 32, 64, or 128 entries.
● Hardware searches the TLB in parallel to find the translation.
● other bits: valid, protection, address-space identifier, dirty bit

VPN PFN other bits

Typical TLB entry

146

TLB Issue: Context Switching

Process A

Process B

TLB Table

Page 0
Page 1
Page 2

Virtual Memory

Page n
…access VPN10

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

VPN PFN valid prot
10 100 1 rwx
- - - -
- - - -
- - - -

Insert TLB Entry

147

TLB Issue: Context Switching

Process A

Process B

TLB Table
VPN PFN valid prot
10 100 1 rwx
- - - -
10 170 1 rwx
- - - -

Context
Switching

access VPN10
Insert TLB Entry

148

Page 0
Page 1
Page 2

Virtual Memory

Page n
…access VPN10

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

TLB Issue: Context Switching

Process A

Process B

TLB Table
VPN PFN valid prot
10 100 1 rwx
- - - -
10 170 1 rwx
- - - -

Can’t Distinguish which entry is
meant for which process

149

Page 0
Page 1
Page 2

Virtual Memory

Page n
…

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

Could just flush the TLB on every context switch…

Disambiguating Address Spaces
● Provide an address space identifier(ASID) field in the TLB.

Process A

Process B

TLB Table
VPN PFN valid prot ASID
10 100 1 rwx 1
- - - - -
10 170 1 rwx 2
- - - - -

150

Page 0
Page 1
Page 2

Virtual Memory

Page n
…

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

Another Case
● Two processes share a page.

● Process 1 is sharing physical page 101 with Process2.
● P1 maps this page into the 10th page of its address space.
● P2 maps this page to the 50th page of its address space.

VPN PFN valid prot ASID
10 101 1 rwx 1
- - - - -
50 101 1 rwx 2
- - - - -

Sharing of pages is
useful as it reduces
the number of physical
pages in use.

151

hit hit hit hit hit hit

● LRU (Least Recently Used)
● Evict an entry that has not recently been used.
● Take advantage of locality in the memory-reference stream.

● 6 hits, 11 misses

TLB Replacement Policy

Reference Row

Page Frame:

7 0
7

1
0
7

2
1
0

3
0
2

4
0
3

2
4
0

3
2
4

0
3
2

1
2
3

0
2
1

7 0 1 2 0 3 0 4 2 3 0 23 1 2 0 1

152

0
2
1

0
3
2

3
0
2

2
3
0

2
1
3

1
0
2

A Real TLB Entry

VPN

0 1 2 3 4 5 6 7 8 9 10 11 … 19 … 31
G ASID

PFN C D V

64-bit MIPS R4000 TLB entry

Flag Content

19-bit VPN The rest reserved for the kernel.

24-bit PFN Systems can support with up to 64GB of main memory(pages).

Global bit(G) Used for pages that are globally-shared among processes.

ASID OS can use to distinguish between address spaces.

Coherence bit(C) determine how a page is cached by the hardware.

Dirty bit(D) marking when the page has been written.

Valid bit(V) tells the hardware if there is a valid translation present in the entry.

153

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

154

