Virtual Memory

- 13 Address Spaces
- 14 Memory API
- 15 Address Translation
- 16 Segmentation
- 17 Free Space Management
- 18 Paging
- 19 Translation Lookaside Buffers
- 20 Advanced Paging
- 21 Swapping
- 22 Swapping Policy

136

TLB

- Part of the chip's memory-management unit (MMU).
- A hardware cache of **popular** virtual-to-physical address translation.

Basic TLB Algorithm

- extract the virtual page number (VPN)
- check for hit in the the TLB
- extract page frame number from relevant TLB entry, form desired physical address, and access memory

Basic TLB Algorithm

Figure 19.1: TLB Control Flow Algorithm

140

Example: Accessing An Array

How a TLB can improve its performance (only data accesses shown)

The TLB improves performance due to spatial locality								
0:	int sum = 0 ;							
1:	<pre>for(i=0; i<10; i++) {</pre>							
2:	<pre>sum += a[i];</pre>							
3:	}							

3 TLB misses and 7 hits. Thus TLB hit rate is 70%.

Locality

- Temporal Locality
 - An instruction or data item that has been recently accessed will likely be reaccessed soon in the future.

Virtual Memory

Spatial Locality

 If a program accesses memory at address x, it will likely soon access memory near x.

	2 ^{nc}	acc	ess (diffe	rent addr but al	so p	aç	ge
Page 1	Page 2	Page 3	Page 4	Page 5		Page n		

Virtual Memory

142

1

Who Handles The TLB Miss?

- Hardware handles the TLB miss entirely on CISC processors.
 - The hardware know where the page tables are located
 - ... "walks" the page table, finding the correct entry and extracting the desired translation, update and retry instruction.
 - this is a hardware-managed TLB.
- RISC processors often manage TLBs in software.
 - On a TLB miss, the hardware raises an exception
 - <u>Trap handler is code</u> within the OS that is written with the express purpose of handling TLB misses.

TLB Control Flow algorithm (OS Handled)

• The hardware would do the following:

```
1:
          VPN = (VirtualAddress & VPN MASK) >> SHIFT
2:
          (Success, TlbEntry) = TLB Lookup(VPN)
3:
          if (Success == True) // TLB Hit
4:
                 if (CanAccess(TlbEntry.ProtectBits) == True)
5:
                           Offset = VirtualAddress & OFFSET MASK
                           PhysAddr = (TlbEntry.PFN << SHIFT) | Offset
6:
7:
                           Register = AccessMemory(PhysAddr)
8:
                 else
9:
                           RaiseException (PROTECTION FAULT)
10:
          else // TLB Miss
11:
                  RaiseException(TLB MISS)
```

• But might be slow, why not just use the hardware approach?

144

TLB entry

- TLB entries are often *fully associative* (any entry for any mapping)
 - A typical TLB might have 32, 64, or 128 entries.
 - Hardware searches the TLB in parallel to find the translation.
 - other bits: valid, protection, address-space identifier, dirty bit

VPN	PFN	other bits								
Typical TLB entry										

		μ <u>Ο</u>		bio	~
I LB ISSU	e: Contex		WILC	SUILIÓ	J
Process A	Page 0 Page 1 Page 2	TI B T	abla		
110CC35 A	Page n	VPN	PFN	valid	prot
	Virtual Memory	10	100	1	rwx
		-	-	-	-
	Page 0	10	170	1	rwx
	Page 1	-	-	-	-
Process B	Page 2 Page n	Can't mean	Disting	<mark>uish</mark> which lich proce	ch entry is ess
	Coul	ld just flush	the TLB o	n every cont	ext switch
Disambig • Provide an add	cour Juating Act dress space identi	d just flush	the TLB o SSS D) field	n every cont Spa d in the	ext switch 14 CES TLB.
Disambig • Provide an add	Juating Acc dress space identi Page 0 Page 1 Page 2 Page n	d just flush	the TLB o SS D) field B Table	n every cont	ext switch 14 CCS TLB.
Disambig • Provide an add Process A	Course Juating Acc dress space identi Page 0 Page 1 Page 2 Page n Virtual Memory	d just flush	the TLB o SSS D) field B Table PFN	n every cont Spa d in the valid pro	ext switch 14 CCS TLB. TLB.
Disambig • Provide an add Process A	Courses space identi Page 0 Page 1 Page 2 Page n Virtual Memory	d just flush	the TLB o SS D) field B Table PFN 100	n every cont Spa d in the valid pro	ext switch 14 CCS TLB. TLB. t ASID c 1
Disambig • Provide an add Process A	Juating Acc Dress space identi Page 0 Page 1 Page 2 Page n Virtual Memory	d just flush	the TLB o SS D) field B Table PFN 100 -	valid pro	ext switch 14 CES TLB. TLB. t ASID t 1 - t 2
Disambig • Provide an add Process A	Courses space idention Page 0 Page 1 Page 2 Page n Virtual Memory	d just flush	the TLB o SS D) field B Table PFN 100 - 170 -	valid pro	ext switch 14 CCS TLB. TLB. 14 14 14 14 14 14 14 14 14 14
Disambig Provide an add Process A	Courses space idention Page 0 Page 1 Page 1 Page 2 Page n Virtual Memory	d just flush d just flush fier(ASI fier(ASI 10 - 10 -	the TLB o SS D) field B Table PFN 100 - 170 -	n every conte Spa d in the d in the 1 rws 1 rws 	ext switch 14 CCS TLB. TLB. 01 4 5 4 5 1 - 5 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - - 5 - - 5 - - - - - - - - - - - - -
Disambig Provide an add Process A	Courses space identi Page 0 Page 1 Page 2 Page n Virtual Memory Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 1 Page 2 	d just flush d just flush fier(ASI fier(ASI 10 - 10 -	the TLB o SS D) field B Table PFN 100 - 170 -	valid pro	ext switch 14 CCES TLB. TLB. 14 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1

Virtual Memory

Another Case

- Two processes share a page.
 - Process 1 is sharing physical page 101 with Process2.
 - P1 maps this page into the 10th page of its address space.
 - P2 maps this page to the 50th page of its address space.

VPN	PFN	valid	prot	ASID
10	101	1	rwx	1
-	-	-	-	-
50	101	1	rwx	2
-	-	-	-	-

Sharing of pages is useful as it reduces the number of physical pages in use.

150

TLB Replacement Policy

- LRU (Least Recently Used)
 - Evict an entry that has not recently been used.
 - Take advantage of *locality* in the memory-reference stream.

• 6 hits, 11 misses

A Real T	LB Entry
64-b	it MIPS R4000 TLB entry
0 1 2 3 4 5 6 7	8 9 10 11 19 31 VPN G G ASID PFN G C D V
Flag	Content
19-bit VPN	The rest reserved for the kernel.
24-bit PFN	Systems can support with up to 64GB of main memory(pages).
Global bit(G)	Used for pages that are globally-shared among processes.
ASID	OS can use to distinguish between address spaces.
Coherence bit(C)	determine how a page is cached by the hardware.
Dirty bit(D)	marking when the page has been written.
Valid bit(V)	tells the hardware if there is a valid translation present in the entry.

Virtual Memory

- 13 Address Spaces
- 14 Memory API
- 15 Address Translation
- 16 Segmentation
- 17 Free Space Management
- 18 Paging
- 19 Translation Lookaside Buffers
- 20 Advanced Paging
- 21 Swapping
- 22 Swapping Policy

Problem

PFN	valid	prot	present	dirty
10	1	r-x	1	0
-	0	-	-	-
-	0	-	-	-
-	0	-	-	-
15	1	rw-	1	1
-	0	-	-	-
3	1	rw-	1	1
23	1	rw-	1	1

156

Problem

Most of the page table is **unused**

PFN	valid	prot	present	dirty
9	1	r-x	1	0
-	0	-	-	-
-	0		-	-
-	0	-	-	-
15	1	rw-	1	1
	0		-	
3	1	rw-	1	1
23	1	rw-	1	1

A Page Table For 16KB Address Space

TLB miss on Hybrid Approach

- Need physical address of entry from page table.
 - Segment bits (SN) determine which base and bounds pair
 - Hardware combines physical address therein and the VPN to form the address of the page table entry (PTE) .

01:	<pre>SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT</pre>
02:	<pre>VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT</pre>
03:	AddressOfPTE = Base[SN] + (VPN * sizeof(PTE))

Multi-level Page Tables

- Hybrid Approach is not without problems
 - Assumes specific segment layout
 - Sparsely-used heap still leads to external fragmentation
- So turn the linear page table into something like a tree
 - Page the page table
 - Allocate page-table pages as needed
 - Track valid page table pages with page directory

Multi-level Page Tables: Page directory

Multi-level Page Tables

- Page directory has:
 - one page directory entry (PDE) per page of the page table
 - Valid bit and page frame number (PFN)

• Advantages

- Page-table space in proportion to used address space
- OS can lazily allocate new pages as need
- *Indirection* can disperse page-table pages through memory

• Disadvantages

- Time and space tradeoff
- Complexity

162

A Detailed Multi-Level Example

0000 0000	code											
0000 0001	code	Flag					Detail					
	(free)	Address space					16 KB					
	(free)			Page	size				64 byte	9		
	heap			Virtua	l addre	ss			14 bit			
	heap			Num p	bages				214/26	$= 2^8 =$	256 p	ages
			_	VPN					8 bit			
				Offset				6 bit				
	stack		_	Page table entry					4 bytes			
1111 1111	stack			· «ge		,						
				A 16	-KB A	ddre	ss Sp	ace V	Vith 64	4-byte	Page	es
ļ							!					
13 12	11	10	9	8	7	6	5	4	3	2	1	0
VPN					;	→			Offset			

