
Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

136

. . .{{{

A Virtual(And Physical) Memory Trace
Page
Table[39]

Page Table[1]

1024

1074

1124

1174

1224

Pa
ge

 T
ab

le
 (P

A)
C

od
e

(P
A)

4096

4146

4196

1024

1074

1124

C
od

e
(V

A)

0 10 20 30 40 50

Ar
ra

y
(P

A)

7232

7282

7132

Ar
ra

y
(V

A)

40000

40050

40100

m
o
v

m
o
v

i
n
c
l

c
m
p
l

j
n
e

Memory Access

137

(code)

(array)

● Part of the chip’s memory-management unit (MMU).
● A hardware cache of popular virtual-to-physical address

translation.

MMU

TLB

CPU

Page 0

TLB
popular v to p

Page 1
Page 2

TLB Hit

Address Translation with MMU

Physical Memory

Page n
…

Logical
Address

TLB
Lookup

Page Table
all v to p entries

TLB Miss

Physical
Address

138

● extract the virtual page number (VPN)

● check for hit in the the TLB

● extract page frame number from relevant TLB entry, form

desired physical address, and access memory

139

Basic TLB Algorithm

Basic TLB Algorithm

140

 How a TLB can improve its performance (only data accesses shown)
Example: Accessing An Array

 OFFSET
 00 04 08 12

VPN = 00

VPN = 01

VPN = 03

VPN = 04

VPN = 05

VPN = 06 a[0] a[1] a[2]

VPN = 07 a[3] a[4] a[5] a[6]

VPN = 08 a[7] a[8] a[9]

VPN = 09

VPN = 10

VPN = 11

VPN = 12

VPN = 13

VPN = 14

0: int sum = 0 ;

1: for(i=0; i<10; i++){

2: sum += a[i];

3: }

3 TLB misses and 7 hits.
Thus TLB hit rate is 70%.

The TLB improves performance
 due to spatial locality

141

Locality
● Temporal Locality

● An instruction or data item that has been recently accessed will likely be re-
accessed soon in the future.

● Spatial Locality
● If a program accesses memory at address x, it will likely soon access

memory near x.

2nd access to same addr as first

Virtual Memory

Page 1

Page 2

Page 3

Page 4

Page 5

Page n

1st access is on page 1
2nd access different addr but also page 1

Virtual Memory

…

Page 1

Page 2

Page 3

Page 4

Page 5

Page n…
Page 6

Page 7

142

Who Handles The TLB Miss?
● Hardware handles the TLB miss entirely on CISC processors.

● The hardware know where the page tables are located
● … “walks” the page table, finding the correct entry and

extracting the desired translation, update and retry instruction.
● this is a hardware-managed TLB.

● RISC processors often manage TLBs in software.
● On a TLB miss, the hardware raises an exception

● Trap handler is code within the OS that is written with the
express purpose of handling TLB misses.

143

TLB Control Flow algorithm (OS Handled)

1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success, TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True) // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBits) == True)

5: Offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: Register = AccessMemory(PhysAddr)

8: else

9: RaiseException(PROTECTION_FAULT)

10: else // TLB Miss

11: RaiseException(TLB_MISS)

144

● The hardware would do the following:

● But might be slow, why not just use the hardware approach?

TLB entry
● TLB entries are often fully associative (any entry for any

mapping)
● A typical TLB might have 32, 64, or 128 entries.
● Hardware searches the TLB in parallel to find the translation.
● other bits: valid, protection, address-space identifier, dirty bit

VPN PFN other bits

Typical TLB entry

145

TLB Issue: Context Switching

Process A

Process B

TLB Table

Page 0
Page 1
Page 2

Virtual Memory

Page n
…access VPN10

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

VPN PFN valid prot
10 100 1 rwx
- - - -
- - - -
- - - -

Insert TLB Entry

146

TLB Issue: Context Switching

Process A

Process B

TLB Table
VPN PFN valid prot
10 100 1 rwx
- - - -
10 170 1 rwx
- - - -

Context
Switching

access VPN10
Insert TLB Entry

147

Page 0
Page 1
Page 2

Virtual Memory

Page n
…

access VPN10

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

TLB Issue: Context Switching

Process A

Process B

TLB Table
VPN PFN valid prot
10 100 1 rwx
- - - -
10 170 1 rwx
- - - -

Can’t Distinguish which entry is
meant for which process

148

Page 0
Page 1
Page 2

Virtual Memory

Page n
…

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

Could just flush the TLB on every context switch…

Disambiguating Address Spaces
● Provide an address space identifier(ASID) field in the TLB.

Process A

Process B

TLB Table
VPN PFN valid prot ASID
10 100 1 rwx 1
- - - - -
10 170 1 rwx 2
- - - - -

149

Page 0
Page 1
Page 2

Virtual Memory

Page n
…

Page 0
Page 1
Page 2

Page n
…

Virtual Memory

Another Case
● Two processes share a page.

● Process 1 is sharing physical page 101 with Process2.
● P1 maps this page into the 10th page of its address space.
● P2 maps this page to the 50th page of its address space.

VPN PFN valid prot ASID
10 101 1 rwx 1
- - - - -
50 101 1 rwx 2
- - - - -

Sharing of pages is
useful as it reduces
the number of physical
pages in use.

150

hit hit hit hit hit hit

● LRU (Least Recently Used)
● Evict an entry that has not recently been used.
● Take advantage of locality in the memory-reference stream.

● 6 hits, 11 misses

TLB Replacement Policy

Reference Row

Page Frame:

7 0

7

1

0

7

2

1

0

3

0

2

4

0

3

2

4

0

3

2

4

0

3

2

1

2

3

0

2

1

7 0 1 2 0 3 0 4 2 3 0 23 1 2 0 1

151

0

2

1

0

3

2

3

0

2

2

3

0

2

1

3

1

0

2

A Real TLB Entry

VPN

0 1 2 3 4 5 6 7 8 9 10 11 … 19 … 31

G ASID

PFN C D V

64-bit MIPS R4000 TLB entry

Flag Content

19-bit VPN The rest reserved for the kernel.

24-bit PFN Systems can support with up to 64GB of main memory(pages).

Global bit(G) Used for pages that are globally-shared among processes.

ASID OS can use to distinguish between address spaces.

Coherence bit(C) determine how a page is cached by the hardware.

Dirty bit(D) marking when the page has been written.

Valid bit(V) tells the hardware if there is a valid translation present in the entry.

152

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

153

● Usually one page table for every process in the system.
● Example:

● 32-bit address space, 4KB pages, 4-byte page-table entries

Paging: Linear (Single-Level) Tables

Page table size = 𝟐𝟑𝟐

𝟐𝟏𝟐 ∗ 𝟒𝑩𝒚𝒕𝒆 = 𝟒𝑴𝑩𝐲𝐭𝐞

Page 0

Page 1

Page 2

Physical Memory

Page n

…

entry

…

entry
entry

entry

Page Table

4B
4KB

154

● Larger pages mean fewer entries
● 32-bit address space, 16KB pages, 4-byte entries.

Paging: Smaller Tables

Page 0

Page 1

Page 2

Physical Memory

Page n

…

entry

…

entry
entry

entry

Page Table

4B
16KB

 per page table𝟐𝟑𝟐

𝟐𝟏𝟔 ∗ 𝟒 = 𝟏𝑴𝑩

Big pages lead to internal fragmentation.
155

Problem
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

code

heap

stack

Virtual Address Space

Physical Memory

PFN valid prot present dirty
10 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 1 rw- 1 1

… … … … …

- 0 - - -

3 1 rw- 1 1

23 1 rw- 1 1

A Page Table For 16KB Address Space

156

Problem
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

code

heap

stack

Virtual Address Space

Physical Memory

PFN valid prot present dirty
9 1 r-x 1 0

- 0 - - -

- 0 - - -

- 0 - - -

15 1 rw- 1 1

… … … … …

- 0 - - -

3 1 rw- 1 1

23 1 rw- 1 1

A Page Table For 16KB Address Space

157

Most of the page table is unused

Hybrid: Page Table Per Segment
● Each process has three page tables associated with it.

● Base register for each segment is physical address of its page
table.

Seg VPN Offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Seg value Content

00 unused segment

01 code

10 heap

11 stack

32-bit Virtual address space with 4KB pages

158GeekOS!

TLB miss on Hybrid Approach
● Need physical address of entry from page table.

● Segment bits (SN) determine which base and bounds pair
● Hardware combines physical address therein and the VPN

to form the address of the page table entry (PTE) .

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT

02: VPN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT

03: AddressOfPTE = Base[SN] + (VPN * sizeof(PTE))

159

Multi-level Page Tables
● Hybrid Approach is not without problems

● Assumes specific segment layout
● Sparsely-used heap still leads to external fragmentation

● So turn the linear page table into something like a tree
● Page the page table
● Allocate page-table pages as needed
● Track valid page table pages with page directory

160

Linear (Left) And Multi-Level (Right) Page Tables

Multi-level Page Tables: Page directory
201PBTR

Linear Page Table Multi-level Page Table

va
lid

pr
ot PFN

1 rx 12

1 rx 13

0 - -

1 rw 100

0 - -

0 - -

0 - -

0 - -

0 - -

0 - -

1 rw 86

1 rw 15

PF
N

20
1

PF
N

20
2

PF
N

20
3

1 201

0 -

0 -

1 203

The Page Directory

PF
N

20
0

va
lid

PFN
1 rx 12

1 rx 13

0 - -

1 rw 100

PF
N

20
1

va
lid

pr
ot PFN

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

0 - -

0 - -

1 rw 86

1 rw 15

PF
N

20
4

200PBTR

161

Multi-level Page Tables
● Page directory has:

● one page directory entry (PDE) per page of the page table
● Valid bit and page frame number (PFN)

● Advantages
● Page-table space in proportion to used address space
● OS can lazily allocate new pages as need
● Indirection can disperse page-table pages through memory

● Disadvantages
● Time and space tradeoff
● Complexity

162

A Detailed Multi-Level Example

Flag Detail

Address space 16 KB

Page size 64 byte

Virtual address 14 bit

Num pages pages

VPN 8 bit

Offset 6 bit

Page table entry 4 bytes

code

code

(free)

(free)

heap

heap

 …

 …

stack

stack

A 16-KB Address Space With 64-byte Pages

0000 0000
0000 0001
 ...

1111 1111

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

163

214 /26 = 28 = 256

Detailed Example
● Page directory has one entry per page of the page table

● 256 pages, 4 bytes for PTE, 64-byte pages
● pages for directory —> 4 bits for PDI
● each page can hold 64/4=16 entries —> 4 bits for PTI

● Accessing invalid page-directory entry raises exception

● Page-table index (PTI) is used to index into the page table page

256 × 4
64 = 16

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index

164

