
Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

163

Flag Detail

Address space 16 KB

Page size 64 byte

Virtual address 14 bit

Num pages pages

VPN 8 bit

Offset 6 bit

Page table entry 4 bytes

code

code

(free)

(free)

heap

heap

 …

 …

stack

stack

A 16-KB Address Space With 64-byte Pages

0000 0000
0000 0001
 ...

1111 1111

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

164

214 /26 = 28 = 256

Two-level example

● Page directory has one entry per page of the page table
● 256 pages, 4 bytes for PTE, 64-byte pages

● pages for single-level directory
● each page can hold 64/4=16 entries:

● —> 4 bits for PDI
● —> 4 bits for PTI

● Accessing invalid page-directory entry raises exception

● Page-table index (PTI) is used to index into the page table page

256 × 4
64 = 16

14-bits Virtual address

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN Offset

Page Directory Index

165

Two-level example

} retrieve PTE,
check for validity

Two-level Page Tables with TLB

} no page table mem
ever accessed

} find and retrieve PDE,
check for validity

} insert PTE
in TLB

More than two levels
● In some cases, a deeper tree is possible.

Flag Detail

Virtual address 30 bits

Page size 512 bytes

VPN 21 bits

Offset 9 bits

PTE size 4 bytes

offsetVPN

167

 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

21-bit PDI means for a single-level page table
• far too large

221 * 22 = 223 = 8 MB

● Deeper trees are possible
 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

offset

Flag Detail

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

PTEs per page 128

VPN

Page Table IndexPage Directory Index

168

14-bit PDI means K PTEs, each 4 bytes, so PD is bytes
• 128 pages for the page directory.
• still too large

214 = 16 214 * 22 = 216

More than two levels

● If our page directory has entries, it spans 128 pages

● So….. we build a third level of the tree, by splitting the page
directory itself into multiple pages of the page directory

● Each page has 128 entries ():
● Each page of page table needs 7 bits to index
● Only one page for the page directory

214

27

169

offsetVPN

PD Index 0 PD Index 1 Page Table Index

 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

More than two levels

probably three
pages

● Assume: PTEs PDE1s PDE0s
● stack 768 bytes
● heap 1800 bytes
● code 1000 bytes

170

offsetVPN

PD Index 0 PD Index 1 Page Table Index

 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2

4

2

1

1

1

only 7 total pages in entire page table

1

1

1

all same pageprobably three
pages

More than two levels

Inverted Page Tables
● Keeping only a single page table that has

● an entry for each physical page of the system

● The entry tells us
● which process is using this page, and
● which virtual page that maps to this physical page

● Finding translating a virtual address now requires a search!
● But can use a per-process hash (PowerPC)
● Hash has entry for each used virtual/physical page, pointing

to the single global page table

171

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping and Demand Paging
● 22 - Swapping Policy

172

Beyond Physical Memory mechanisms

● Require an additional level in the memory hierarchy.
● OS needs a place to stash portions of the address space not currently used
● Usually served by swapping to a hard drive

Mass Storage(hard disk, tape, etc...)

Main Memory

Cache

Registers

Memory Hierarchy in modern systems

173

Single large address for a process
● Need to arrange for the code or data to be in memory

before calling a function or accessing data.

● Beyond just a single process
● The addition of swapping allows the OS to support the illusion

of a large virtual memory for multiple concurrently-running
processes

● even if total used virtual memory exceeds physical memory

174

Swap Space
● Reserve some space on the disk for swapping pages

● Processes 0, 1, 2 have page in physical memory
● not all of them
● process 3 is completely swapped out

Proc 0
[VPN 0]

Proc 1
[VPN 2]

Proc 1
[VPN 3]

Proc 2
[VPN 0]

Physical
Memory

PFN 0 PFN 1 PFN 2 PFN 3

Proc 0
[VPN 1]

Proc 0
[VPN 2] [Free] Proc 1

[VPN 0]
Proc 1
[VPN 1]

Proc 3
[VPN 0]

Proc 2
[VPN 1]

Proc 3
[VPN 1]

Swap
Space

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Physical Memory and Swap Space

175

Present Bit
● Need PTE bit to support swapping pages to disk.

● When the hardware looks in the PTE, it may find that the page
is not present in physical memory.

● OS often needs to make room for the new pages
● Picking a page to replace is the page-replacement or victim-

selection policy

Value Meaning

1 page is present in physical memory

0 The page is not in memory but rather on disk.

176

The Page Fault
● Accessing page that is not in physical memory.

● A page with false present bit has either:
● never been in-core (lazily loaded), or
● has been swapped out to disk

177

 PTE used for data such as the PFN of the page for a disk address.
Page Fault Control Flow

i

Operating System

Secondary Storage

Load M

Virtual Address

Page Table
1. Reference

6. retry

2.Trap

3. Check if page exists.

Page Frame

Page Frame

Page Frame

...

Page Frame

4. Get the page

5. Reset Page Table.

When the OS receives a page fault, it looks in the PTE and issues the request to disk.

178

Single-Level Page Fault hardware
1: VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2: (Success, TlbEntry) = TLB_Lookup(VPN)

3: if (Success == True) // TLB Hit

4: if (CanAccess(TlbEntry.ProtectBits) == True)

5: Offset = VirtualAddress & OFFSET_MASK

6: PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7: Register = AccessMemory(PhysAddr)
8: else

9: RaiseException(PROTECTION_FAULT)

10: else // TLB Miss

11: PTEAddr = PTBR + (VPN * sizeof(PTE))

12: PTE = AccessMemory(PTEAddr)
13: if (PTE.Valid == False)

14: RaiseException(SEGMENTATION_FAULT)

15: else

16: if (CanAccess(PTE.ProtectBits) == False)

17: RaiseException(PROTECTION_FAULT)

18: else if (PTE.Present == True)

19: // assuming hardware-managed TLB

20: TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)

21: RetryInstruction()

22: else if (PTE.Present == False)

23: RaiseException(PAGE_FAULT)
179

} crash?

} all good

} page fault

}
no page table
mem ever
accessed

1: PFN = FindFreePhysicalPage()

2: if (PFN == -1) // no free page found

3: PFN = EvictPage() // run replacement algorithm

4: DiskRead(PTE.DiskAddr, pfn) // sleep (waiting for I/O)
5: PTE.present = True // update page table with present

6: PTE.PFN = PFN // bit and translation (PFN)

7: RetryInstruction() // retry instruction

◆ The OS must find a physical frame for the soon-be-faulted-in page

◆ If no such page, run replacement algorithm (often asynchronous)

180

Single-Level Page Fault software

When Replacements Really Occur
● Wait until memory entirely full?

● No, proactively try to keep small portion of memory free

● Swap or Page Daemon
● Frees/evicts page frames if fewer than a low-water threshold available
● …until a high-water threshold pages available

181

Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

182

Beyond Physical Memory: Policies
● Memory pressure forces the OS to start paging out pages

to make room for actively-used pages.

● Deciding which page to evict is encapsulated within the
replacement policy of the OS.

183

Swap Management
● Goal in picking a replacement policy for this cache is to

minimize the number of cache misses.
● The number of cache hits and misses let us calculate the

average memory access time (AMAT).

AMAT = TM + Pmiss * TD

Argument Meaning

TM The cost of accessing memory

TD The cost of accessing disk

Phit The probability of finding the data item in the cache(a hit)

Pmiss The probability of not finding the data in the cache(a miss)

184

The Optimal Replacement Policy OPT

● Leads to the fewest number of misses overall
● Replaces the page that will be accessed furthest in the future
● Resulting in the fewest-possible cache misses

● Not achievable

185

Tracing the Optimal Policy

Reference Row

0 1 2 0 1 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State
0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 0,1,2

1 Hit 0,1,2

3 Miss 2 0,1,3

0 Hit 0,1,3

3 Hit 0,1,3

1 Hit 0,1,3

2 Miss 3 0,1,2

1 Hit 0,1,2

186

replace the page
first subsequently
referenced furthest
in the future

6 hits
5 misses

A Simple Policy: Random
● Pick a random page to replace under memory pressure:

● No attempt to do anything fancy
● Performance depends entirely on random chance

Access Hit/Miss? Evict Resulting Cache State
0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 0,1,2

1 Hit 0,1,2

3 Miss 0 1,2,3

0 Miss 1 2,3,0

3 Hit 2,3,0

1 Miss 3 2,0,1

2 Hit 2,0,1

1 Hit 2,0,1
187

5 hits
6 misses

Random Performance
● Sometimes, Random is as good as optimal, achieving 6

hits on the example trace.

Fr
eq

ue
nc

y

0

13

25

38

50

Number of Hits

1 2 3 4 5 6

Random Performance over 10,000 Trials

188

The Exam (all point totals approximate)
● GeekOS and general kernel structure:
● Queueing:

● Characteristics
● Deriving queue lengths
● turnaround time
● etc….

● Paging and memory systems:
● segmentation
● paging
● multi-level page tables

● Paging and swap mechanisms systems:
● victim-replacement policies: LRU, FIFO, OPT

189

The Exam (all point totals approximate)
● GeekOS and general kernel structure: 10 pts
● Queueing: 25 pts

● Characteristics
● Deriving queue lengths
● turnaround time
● etc.

● Paging and memory systems: 25 pts
● segmentation
● paging
● multi-level page tables

● Paging and swap mechanisms systems: 25 pts
● victim-replacement policies: LRU, FIFO, OPT

190

