
Virtual Memory
● 13 - Address Spaces
● 14 - Memory API
● 15 - Address Translation
● 16 - Segmentation
● 17 - Free Space Management
● 18 - Paging
● 19 - Translation Lookaside Buffers
● 20 - Advanced Paging
● 21 - Swapping
● 22 - Swapping Policy

190

FIFO another simple policy

● Pages placed in a queue when they enter the system
● Evict page on the tail of the queue (“first-in”)

● Simple to implement, but does not care about block
importance

191

Reference Stream

0 1 2 0 1 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State

0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 0,1,2

1 Hit 0,1,2

3 Miss 0 1,2,3

0 Miss 1 2,3,0

3 Hit 2,3,0

1 Miss 3,0,1

2 Miss 3 0,1,2

1 Hit 0,1,2

Tracing the FIFIO Policy

192

4 hits
7 misses

BELADY’S ANOMALY
● We would expect the cache hit rate to never decrease when cache grows

with same input stream. But with FIFO, not so:

● FIFO does not have the stack policy
● i.e. set of pages in n frames always subset of pages in n+1 frames

Pa
ge

 F
au

lt
C

ou
nt

0

3

6

9

12

Page Frame Count

1 2 3 4 5 6 7

Reference Stream

1 2 3 4 1 2 5 1 2 3 4 5

193

Using History
● Lean on the past and use history.

● Two type of historical information.

Historical
Information Meaning Algorithms

recency temporal locality says recently used page has value LRU

frequency Frequently used page has value, should not be replaced LFU

194

Using History : LRU
● Replaces the least-recently-used page.

Reference Stream

0 1 2 0 1 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State

0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 1,2,0

1 Hit 2,0,1

3 Miss 2 0,1,3

0 Hit 1,3,0

3 Hit 1,0,3

1 Hit 0,3,1

2 Miss 0 3,1,2

1 Hit 3,2,1 195

6 hits
5 misses

Workload Example : The No-Locality Workload
● Each reference is to a random page within the set of

accessed pages.
● Workload accesses 100 unique pages over time.
● Choosing the next page to refer to at random

H
it

R
at

e

Cache Size (Blocks)

OPT
LRU
FIFO
RAND

100%

80%

60%

40%

20%

20 40 60 80 100

The No-Locality Workload

When the cache is large enough to fit
the entire workload, the policy
doesn’t matter.

196

Workload Example : The 80-20 Workload
● Exhibits locality: 80% of the reference are made to 20% of

the page
● The remaining 20% of the reference are made to the

remaining 80% of the pages.

H
it

R
at

e

Cache Size (Blocks)

OPT
LRU
FIFO
RAND

100%

80%

60%

40%

20%

20 40 60 80 100

The 80-20 Workload

LRU is more likely to
hold onto the hot pages.

197

Workload Example : The Looping Sequential
● Refer to 50 pages in sequence.

● Starting at 0, then 1, … up to page 49, and then we Loop, repeating those
accesses, for total of 10,000 accesses to 50 unique pages.

H
it

R
at

e

Cache Size (Blocks)

OPT
LRU
FIFO
RAND

100%

80%

60%

40%

20%

20 40 60 80 100

The Looping-Sequential Workload

198

Implementing Historical Algorithms
● To keep track of which pages have been least-and-recently

used, the system has to do some accounting work on
every memory reference.
● Add a little bit of hardware support.

199

Approximating LRU
● Require some hardware support, in the form of a use bit

● When a page is referenced, the use bit is set by hardware to 1
● Hardware never clears the bit

● Clock Algorithm
● All system pages arranged in a circular list
● Clock hand points to the “current” page
● When a victim is needed, pages are checked while hand is advanced:

● if use = 1, use is set to 0
● if use = 0, the page is chosen to be replaced

200

Clock Algorithm
● The algorithm searches for a use bit that is set to 0.

When a page fault occurs, the page the hand is pointing to is inspected.
The action taken depends on the use bit

Use bit Meaning

0 Evict the page

1 Clear use bit and advance hand

The Clock page replacement algorithm

A
B

C

D
E

F

G

H

201

● Clock algorithm is not a perfect approximation of LRU, but
it can be close

Workload with Clock Algorithm

H
it

R
at

e

Cache Size (Blocks)

OPT
LRU
Clock
FIFO
RAND

100%

80%

60%

40%

20%

20 40 60 80 100

The 80-20 Workload

202

Optimizations dirty pages

● The hardware include a modified bit (a.k.a dirty bit)
● Page has been modified and is thus dirty, it must be written back to disk

to evict it.
● Page has not been modified, the eviction is free.

203

● OS may fetch multiple pages from disk instead of only one

Page 3

Page 4

Page 5

Page n

Page 1 is brought into memory

Physical Memory

…

Secondary
Storage

Page 1

Page 2

Page 3

Page 4

…

Spatial locality implies that page 2 may soon be accessed and
thus should be brought into memory too

204

Optimizations prefetching

● Collect a number of pending writes together in memory
and write them to disk in one write.
● A single large write is more efficient than many small ones.

Page 1

Page 2

Page 3

Page 4

Page 5

Page n

Pending writes

Physical Memory

…

Secondary
Storage

Page 1

Page 2

Page 3

Page 4

…

write in one write

205

Optimizations clustering, grouping

