
Virtual Memory
● 13 - Address Spaces 
● 14 - Memory API 
● 15 - Address Translation 
● 16 - Segmentation 
● 17 - Free Space Management 
● 18 - Paging 
● 19 - Translation Lookaside Buffers 
● 20 - Advanced Paging 
● 21 - Swapping 
● 22 - Swapping Policy
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FIFO another simple policy

● Pages placed in a queue when they enter the system 
● Evict page on the tail of the queue (“first-in”) 

● Simple to implement, but does not care about block 
importance
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Reference Stream

0 1 2 0 1 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State

0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 0,1,2

1 Hit 0,1,2

3 Miss 0 1,2,3

0 Miss 1 2,3,0

3 Hit 2,3,0

1 Miss 3,0,1

2 Miss 3 0,1,2

1 Hit 0,1,2

Tracing the FIFIO Policy
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4 hits 
7 misses

BELADY’S ANOMALY
● We would expect the cache hit rate to never decrease when cache grows 

with same input stream. But with FIFO, not so: 

● FIFO does not have the stack policy 
● i.e. set of pages in n frames always subset of pages in n+1 frames
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Page Frame Count
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Reference Stream

1 2 3 4 1 2 5 1 2 3 4 5
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Using History
● Lean on the past and use history. 

● Two type of historical information.

Historical 
Information Meaning Algorithms

recency temporal locality says recently used page has value LRU

frequency Frequently used page has value, should not be replaced LFU
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Using History : LRU
● Replaces the least-recently-used page. 

                                                                          

Reference Stream

0 1 2 0 1 3 0 3 1 2 1

Access Hit/Miss? Evict Resulting Cache State

0 Miss 0

1 Miss 0,1

2 Miss 0,1,2

0 Hit 1,2,0

1 Hit 2,0,1

3 Miss 2 0,1,3

0 Hit 1,3,0

3 Hit 1,0,3

1 Hit 0,3,1

2 Miss 0 3,1,2

1 Hit 3,2,1 195

6 hits 
5 misses



Workload Example : The No-Locality Workload
● Each reference is to a random  page within the set of 

accessed pages. 
● Workload accesses 100 unique pages over time. 
● Choosing the next page to refer to at random
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Cache Size (Blocks)

OPT
LRU
FIFO
RAND

100%

80%

60%

40%

20%

20 40 60 80 100

The No-Locality Workload 

When the cache is large enough to fit 
the entire workload, the policy 
doesn’t matter.
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Workload Example : The 80-20 Workload
● Exhibits locality: 80% of the reference are made to 20% of 

the page 
● The remaining 20% of the reference are made to the 

remaining 80% of the pages.
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Cache Size (Blocks)

OPT
LRU
FIFO
RAND

100%

80%

60%

40%

20%

20 40 60 80 100

The 80-20 Workload

LRU is more likely to 
hold onto the hot pages. 
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Workload Example : The Looping Sequential
● Refer to 50 pages in sequence. 

● Starting at 0, then 1, … up to page 49, and then we Loop, repeating those 
accesses, for total of 10,000 accesses to 50 unique pages.
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Cache Size (Blocks)

OPT
LRU
FIFO
RAND

100%

80%

60%

40%

20%

20 40 60 80 100

The Looping-Sequential Workload
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Implementing Historical Algorithms
● To keep track of which pages have been least-and-recently 

used, the system has to do some accounting work on 
every memory reference.
● Add a little bit of hardware support.
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Approximating LRU
● Require some hardware support, in the form of a use bit

● When a page is referenced, the use bit is set by hardware to 1 
● Hardware never clears the bit 

● Clock Algorithm 
● All system pages arranged in a circular list 
● Clock hand points to the “current” page 
● When a victim is needed, pages are checked while hand is advanced: 

● if use = 1, use is set to 0 
● if use = 0, the page is chosen to be replaced
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Clock Algorithm
● The algorithm searches for a use bit that is set to 0.

When a page fault occurs, the page the hand is pointing to is inspected. 
The action taken depends on the use bit

Use bit Meaning

0 Evict the page

1 Clear use bit and advance hand

The Clock page replacement algorithm

A
B

C

D
E

F

G

H
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● Clock algorithm is not a perfect approximation of LRU, but 
it can be close

Workload with Clock Algorithm
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Cache Size (Blocks)

OPT
LRU
Clock
FIFO
RAND

100%

80%

60%

40%

20%

20 40 60 80 100

The 80-20 Workload
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Optimizations dirty pages

● The hardware include a modified bit (a.k.a dirty bit) 
● Page has been modified and is thus dirty, it must be written back to disk 

to evict it. 
● Page has not been modified, the eviction is free.
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● OS may fetch multiple pages from disk instead of only one

Page 3

Page 4

Page 5

Page n

Page 1 is brought into memory

Physical Memory

…

Secondary
Storage

Page 1

Page 2

Page 3

Page 4

…

Spatial locality implies that page 2 may soon be accessed and 
thus should be brought into memory too
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Optimizations prefetching

● Collect a number of pending writes together in memory 
and write them to disk in one write. 
● A single large write is more efficient than many small ones.

Page 1

Page 2

Page 3

Page 4

Page 5

Page n

Pending writes

Physical Memory

…

Secondary
Storage

Page 1

Page 2

Page 3

Page 4

…

write in one write
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Optimizations clustering, grouping


