
Concurrency
● Exam 1
● 26 - Concurrency
● 27 - Overview, and POSIX threads (pthreads)
● 28 - Locks
● 29 - Concurrent Data Structures
● 30 Condition Variables
● 31 - Semaphores
● 32 - Common Problems
● 33 - Event-Based Concurrency

228

Concurrency
● Exam 1
● 26 - Concurrency
● 27 - Overview, and POSIX threads (pthreads)
● 28 - Lock Details
● 29 - Concurrent Data Structures
● 30 Condition Variable Details
● 31 - Semaphores
● 32 - Common Problems
● 33 - Event-Based Concurrency

229

Locks the basic idea

● Ensure that any critical sections executes atomically
● Canonical update of a shared variable:

● Use locks:

230

balance = balance + 1;

1 lock_t mutex; // some globally-allocated lock ‘mutex’
2 …
3 lock(&mutex);
4 balance = balance + 1;
5 unlock(&mutex);

Locks the basic idea

● Lock variables hold the lock state:
● unlocked (or available, or free)

● no thread holds the lock

● locked (or acquired or held)
● exactly one thread holds the lock
● presumably in the critical section

231

Locks semantics

● lock()
● acquired if no other thread holds it
● enter critical section

● calling thread is now the lock’s owner
● other threads prevented from entering the critical section

● assuming proper lock discipline

● using many mutexes increases concurrency
● efficient locks require help from hardware and the OS

232

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2
3 Pthread_mutex_lock(&lock);
4 balance = balance + 1;
5 Pthread_mutex_unlock(&lock);

Goal and Metrics for locks

● Mutual exclusion:
● does it work?
● correctness

● Fairness:
● can threads starve?
● do they get a fair share?

● Performant:
● how much overhead

233

Lock implementation controlling interrupts

● Half-century-old approach:
● disable interrupts for critical sections
● even for single-processors:

● Problems:
● requires trust in applications
▪ greedy program might not enable interrupts until done

● not sufficient for multiprocessors
● expensive
● is the above implementation correct and complete?

234

1. void lock() {
2. DisableInterrupts();
3. }
4. void unlock() {
5. EnableInterrupts();
6. }

Lock implementation do we really need hardware?

● First attempt:
● use a flag to show if lock held:

● This code has problems:
● correctness
● efficiency 235

1. typedef struct __lock_t { int flag; } lock_t;
2.
3. void init(lock_t *mutex) {
4. // 0 lock is available, 1 held
5. mutex->flag = 0;
6. }
7.
8. void lock(lock_t *mutex) {
9. while (mutex->flag == 1) // TEST the flag
10. ; // spin-wait (do nothing)
11. mutex->flag = 1; // now SET it !
12. }
13.
14. void unlock(lock_t *mutex) {
15. mutex->flag = 0;
16. }

Lock implementation do we really need hardware?

● Correctness: (no mutual exclusion)

● Performance:
● spin-waiting

● not doing useful work
● might be actively preventing the lock from being released

236

Thread1 Thread2

call lock()
while (flag == 1)
interrupt: switch to Thread 2

call lock()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1

flag = 1; // set flag to 1 (too!)

Peterson’s algorithm do we really need hardware?

237

int flag[2];
int turn;

void init() {
 // indicate you intend to hold the lock w/ ’flag’
 flag[0] = flag[1] = 0;
 // whose turn is it? (thread 0 or 1)
 turn = 0;
}

void lock() {
 // ’self’ is the thread ID of caller
 flag[self] = 1;
 // make it other thread’s turn
 turn = 1 - self;
 while ((flag[1-self] == 1) && (turn == 1 - self))
 ; // spin-wait while it’s not your turn
}

void unlock() {
 // simply undo your intent
 flag[self] = 0;
}

doesn’t work w/ relaxed
consistency models

already had hardware
support when this written

still important for under-
standing synchronization

Test-and-Set hardware support

● single atomic hardware instruction
● pseudocode:

● returns old value to be tested
● simultaneously updates value to new

238

1. int TestAndSet(int *ptr, int new) {
2. int old = *ptr; // fetch old value at ptr
3. *ptr = new; // store ‘new’ into ptr
4. return old; // return the old value
5. }

Test-and-Set making a spin lock

● requires a preemptive scheduler, even for single processor

239

1. typedef struct __lock_t {
2. int flag;
3. } lock_t;
4.
5. void init(lock_t *lock) {
6. // 0 indicates that lock is available,
7. // 1 that it is held
8. lock->flag = 0;
9. }
10.
11. void lock(lock_t *lock) {
12. while (TestAndSet(&lock->flag, 1) == 1)
13. ; // spin-wait
14. }
15.
16. void unlock(lock_t *lock) {
17. lock->flag = 0;
18. }

Test-and-Set Goal and Metrics

● Mutual exclusion: yes
● does it work?
● correctness

● Fairness: no
● can threads starve?
● do they get a fair share?

● Performant: not usually
● on single CPU often quite bad
● may be ok if:
 #threads about the same as #processors

240

Compare-and-Swap hardware support

● Test whether *ptr == expected_value
● if so: update *ptr with expected_value
● always: return actual value from prior to instruction

● pseudocode:

● Spin lock using compare-and-swap:

● vs test-and-set?
● more powerful 241

1. int CompareAndSwap(int *ptr, int expected, int new) {
2. int actual = *ptr;
3. if (actual == expected)
4. *ptr = new;
5. return actual;
6. }

1. void lock(lock_t *lock) {
2. while (CompareAndSwap(&lock->flag, 0, 1) == 1)
3. ; // spin
4. }

Load-Linked Stores hardware support

● pseudocode:

● only succeeds if no intervening store to same address
● success: 1 is returned, and update *ptr to value
● failure: 0 is returned, no change to *ptr

● vs test-and-set?
● more powerful

● can be efficient for hardware 242

1. int LoadLinked(int *ptr) {
2. return *ptr;
3. }
4.
5. int StoreConditional(int *ptr, int value) {
6. if (*ptr not updated since the LoadLinked to this address) {
7. *ptr = value;
8. return 1; // success!
9. } else {
10. return 0; // failed to update
11. }
12. }

Locks so much spinning

● Hardware-based spin locks are simple and correct
● they can also be very inefficient….

● Address with OS support:
● instead of spinning, just yield….

243

1. void init() {
2. flag = 0;
3. }
4.
5. void lock() {
6. while (TestAndSet(&flag, 1) == 1)
7. yield(); // give up the CPU
8. }
9.
10. void unlock() {
11. flag = 0;
12. }

Using queues sleeping instead of spinning

● Use a queue to track threads waiting to enter a lock
● park() : put calling thread to sleep
● unpark(threadID) : wake specific thread

244

1. typedef struct __lock_t { int flag; int guard; queue_t *q; } lock_t;
2.
3. void lock_init(lock_t *m) {
4. m->flag = 0;
5. m->guard = 0;
6. queue_init(m->q);
7. }
8.
9. void lock(lock_t *m) {
10. while (TestAndSet(&m->guard, 1) == 1)
11. ; // acquire guard lock by spinning
12. if (m->flag == 0) {
13. m->flag = 1; // lock is acquired
14. m->guard = 0;
15. } else {
16. queue_add(m->q, gettid());
17. m->guard = 0;
18. park();
19. }
20. }
21. …

Using queues sleeping instead of spinning

245

 void unlock(lock_t *m) {
 while (TestAndSet(&m->guard, 1) == 1)
 ; // acquire guard lock by spinning
 if (queue_empty(m->q))
 m->flag = 0; // let go of lock; no one wants it
 else
 unpark(queue_remove(m->q)); // hold lock (for next thread!)
 m->guard = 0;
 }

Using queues sleeping instead of spinning

246

● There is a race between waking up and waiting
● Think of releasing a lock in TA just before TB calls park()
● TB could sleep forever…

● Solaris solves by adding a third system call: setpark()
● indicates that a thread is about to park
● if a thread is interrupted, and another thread calls unpark()

before park actually happens, the park() returns immediately

1. queue_add(m->q, gettid());
2. setpark(); // new code
3. m->guard = 0;
4. park();

Concurrency
● Exam 1
● 26 - Concurrency
● 27 - Overview, and POSIX threads (pthreads)
● 28 - Locks
● 29 - Concurrent Data Structures
● 30 Condition Variables
● 31 - Semaphores
● 32 - Common Problems
● 33 - Event-Based Concurrency

247

● Mechanisms:
● disabling interrupts

● pretty much all we need if single core
● but

▪ privileged instruction
▪ need to trust thread
▪ not efficient
▪ doesn’t work on multiprocessors

● atomic instructions
● test-and-set

▪ set memory location to value, returning old value
● compare-and-swap

▪ store at memory location only if it equals specific value
● load-linked store

▪ load from memory location
▪ store new value to same location (only if it has not been updated)

Mutual Exclusion mechanism summary

248

