Queuing Theory without probabilities
Queueing Theory without probabilities

- **Queueing system**
 - servers + waiting rooms
 - customers arrive, wait, get served, depart or go to next server
 - queueing disciplines
 - non-preemptive: fifo, priority, ...
 - preemptive: round-robin, multi-level feedback, ...

- Operating systems are examples of queueing systems
 - servers: hw/sw resources (cpu, disk, req handler, …)
 - customers: PCBs, TCBs, ...

- Given: arrival rates, service times, queueing disciplines, ...
- Obtain: queue sizes, response times, fairness, bottlenecks, ...

Queueing Theory without probabilities

- Consider cars traveling on a road with a turn
 - each car takes 3 seconds to go through the turn
 - at most one car can be in the turn at any time
 - \(N(t) \): # cars in the turn and waiting to enter the turn

- Load < 1: stable w/ waits depending on burstiness
- Load > 1: unstable, ever-increasing waits

![Diagram of car arrivals and turns](image)
Queuing Theory without probabilities

- Assume unending stream of customers:
 - arrival rate λ or X: \# arrivals per second
 - average service time S: work needed per customer
 - average response time R: departure time D - arrival time A
 - average wait time W: response time - service time
 - throughput X: \# departures per sec averaged over all time
 - average customers in system N: waiting or busy
 - utilization U: fraction of time server is busy

- Typical goal
 - Given: arrival rate, avg service time, queueing discipline
 - Obtain: average response time, average queue size

- Little’s Law (for any steady-state system):
 - $N = \lambda \times R$

Queuing Theory without probabilities

- Avg queue size N increases exponentially with load ρ
 - becoming ∞ as $\rho \to 1$
 - N increases as burstiness increases
FCFS non-preemptive

<table>
<thead>
<tr>
<th>customer</th>
<th>(A_i)</th>
<th>(S_i)</th>
<th>(D_i)</th>
<th>(R_i)</th>
<th>(W_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>3.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>6.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.0</td>
<td>7.0</td>
<td>4.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

repeats every 10 seconds

- System becomes empty at time 7 —> stable
 - Average response time:
 \[
 R = \frac{3.0 + 4.0 + 4.0}{3} = \frac{11.5}{3} \text{ sec}
 \]
 - Average wait time:
 \[
 W = \frac{0.0 + 2.0 + 3.5}{3} = \frac{5.5}{3} \text{ sec}
 \]
 - Arrival rate = throughput:
 \[
 \lambda = \frac{3}{10} \text{ arrivals / sec}
 \]
 - Utilization:
 \[
 U = \frac{6}{10}
 \]
 - Average number customers:
 \[
 N = \lambda \times R = \frac{3}{10} \times \frac{11.5}{3} = \frac{11.5}{10}
 \]

SJF non-preemptive

<table>
<thead>
<tr>
<th>customer</th>
<th>(A_i)</th>
<th>(S_i)</th>
<th>(D_i)</th>
<th>(R_i)</th>
<th>(W_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>3.0</td>
<td>4.0</td>
<td>3.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>7.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.0</td>
<td>5.0</td>
<td>2.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

repeats every 10 seconds

- System becomes empty at time 7 —> stable
 - Average response time:
 \[
 R = \frac{3.0 + 5.0 + 2.5}{3} = \frac{10.5}{3} \text{ sec}
 \]
 - Average wait time:
 \[
 W = \frac{0.0 + 3.0 + 1.5}{3} = \frac{4.5}{3} \text{ sec}
 \]
 - Arrival rate = throughput:
 \[
 \lambda = \frac{3}{10} \text{ arrivals/sec}
 \]
 - Utilization:
 \[
 U = \frac{6}{10}
 \]
 - Average number customers:
 \[
 N = \lambda \times R = \frac{3}{10} \times \frac{10.5}{3} = \frac{10.5}{10}
 \]
SJS preemptive

<table>
<thead>
<tr>
<th>customer</th>
<th>A_i</th>
<th>S_i</th>
<th>D_i</th>
<th>R_i</th>
<th>W_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>7.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.0</td>
<td>3.5</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

repeats every 10 seconds

- System becomes empty at time 7 \rightarrow stable
 - Average response time: $R = \frac{4.0 + 5.0 + 1.0}{3} = \frac{10.0}{3}$ sec
 - Average wait time: $W = \frac{1.0 + 3.0 + 0.0}{3} = \frac{4.0}{3}$ sec
 - Arrival rate = throughput: $\lambda = \frac{3}{10}$ arrivals / sec
 - Utilization: $U = \frac{6}{10}$
 - Average number customers: $N = \lambda \times R = \frac{3}{10} \times \frac{10.0}{3} = \frac{10}{10}$

RR preemptive

<table>
<thead>
<tr>
<th>customer</th>
<th>A_i</th>
<th>S_i</th>
<th>D_i</th>
<th>R_i</th>
<th>W_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>3.0</td>
<td>7.0</td>
<td>6.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>6.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.0</td>
<td>5.0</td>
<td>2.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

repeats every 10 seconds

- System becomes empty at time 7 \rightarrow stable
 - Average response time: $R = \frac{6.0 + 4.0 + 2.5}{3} = \frac{12.5}{3}$ sec
 - Average wait time: $W = \frac{3.0 + 2.0 + 1.5}{3} = \frac{6.5}{3}$ sec
 - Arrival rate = throughput: $\lambda = \frac{3}{10}$ arrivals / sec
 - Utilization: $U = \frac{6}{10}$
 - Average number customers: $N = \lambda \times R = \frac{3}{10} \times \frac{12.5}{3} = \frac{12.5}{10}$
Scheduling Summary

- response time vs average num customers:

<table>
<thead>
<tr>
<th></th>
<th>FCFS</th>
<th>SJF</th>
<th>SJFP</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>N</td>
<td>11.5</td>
<td>11.5</td>
<td>10.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Little's Law: $N = \lambda \times R$

- ratio of R/N constant, because throughput (X) is same

M/M/1 queues

- M/M/1 assumption
 - (M)emoryless (independent) interarrival times exp dist w/ mean $\frac{1}{\lambda}$
 - (M)emoryless (independent) service times exp dist w/ mean S
 - (1) server

- For stable M/M/1 queue: $N = \frac{\rho}{1 - \rho}$
Deadlocks

- Necessary conditions for deadlock
 - Mutual exclusion - Threads claim exclusive control of resources
 - Hold and wait - Threads hold resources while waiting for additional resources
 - No preemption - Resources cannot be removed from threads that hold them
 - Circular wait - There exists a chain of threads such that each holds one or more resources that are requested by the next thread in the chain

- What to do?
 - prevent
 - avoid
 - deal with when they occur
 - pretend they never happen

Resource Allocation Graph

A set of vertices \(V \) and a set of edges \(E \):

- \(V \) is partitioned into two types:
 - \(P = \{P_1, P_2, \ldots, P_n\} \), the set of all the processes in the system
 - \(R = \{R_1, R_2, \ldots, R_m\} \), the set of all resource types in the system

- request edge: directed edge \(P_i \rightarrow R_j \)
- assignment edge: directed edge \(R_j \rightarrow P_i \)
Resource Allocation Graph (cont.)

- Process

- Resource type with 4 instances

- P_i requests instance of R_j

- P_i is holding an instance of R_j

Resource Allocation Graph example

- P_1 requesting instance of R_1
- P_2 requesting instance of R_2
- one R_1 held by P_1
- one R_2 held by P_3
- distinct R_3 instances held by P_1 and P_2
Resource Allocation Graph

- $P_2 \rightarrow R_2 \rightarrow P_3 \rightarrow R_3 \rightarrow P_2$
 deadlock
- $R_3 \rightarrow P_1 \rightarrow R_1 \rightarrow P_2$
 not deadlock, but blocked by deadlock

Handling Deadlocks what to do

- What to do?
 - prevent
 - avoid
 - deal with when they occur
 - pretend they never happen
Deadlock Prevention

- Try to prevent one of the four conditions from holding true
 - Difficult to eliminate mutual exclusion
 - Prevent threads from requesting new resources when holding other resources (eliminates hold and wait)
 - Require threads not immediately able to get all needed resources to give up those they have (eliminates no preemption)
 - Require agreed-upon resource acquisition ordering (eliminates circular waiting).

Agree on lexicographic ordering on lock acquisitions:

- or address-based:

```c
if (m1 > m2) {
    pthread_mutex_lock(m1);
    pthread_mutex_lock(m2);
} else {
    pthread_mutex_lock(m2);
    pthread_mutex_lock(m1);
}
```
Deadlock Prevention circular wait

- Agree on lexicographic ordering on lock acquisitions:

 T1: `pthread_mutex_lock(m1);`
 `pthread_mutex_lock(m2);`
 T2: `pthread_mutex_lock(m2);`
 `pthread_mutex_lock(m1);`

- or address-based:

  ```c
  if (m1 > m2) {        // grab in high-to-low address order
    pthread_mutex_lock(m1);
    pthread_mutex_lock(m2);
  } else {
    pthread_mutex_lock(m2);
    pthread_mutex_lock(m1);
  }
  ```
Deadlock Prevention **hold and wait**

- Acquire all locks at once:

  ```c
  pthread_mutex_lock(prevention);       // begin acquisition
  pthread_mutex_lock(L1);
  pthread_mutex_lock(L2);
  ...
  pthread_mutex_unlock(prevention);    // end
  ```

- **But:**
 - `prevention` lock is global
 - need complete information

Deadlock Prevention **no preemption**

- **Try locks**
 - atomically grab lock if available, or return w/ error

  ```c
  top:   
  pthread_mutex_lock(L1);               // begin acquisition
  if (pthread_mutex_trylock(L2) != 0) {
      pthread_mutex_unlock(L1);
      goto top;
  }
  ```

- Works even if other thread choose different order. However: **livelock:**
 - Possible, though unlikely, that the threads both repeatedly back off. We could fix this with random delays.

- Other issue is **encapsulation:** some of the locks might be acquired in called functions, making jump back to initial state more difficult
Deadlock Prevention mutual exclusion

- **Lock-free** and **wait-free** data structures and algorithms
- use atomic instructions such as *CompareAndSwap*

// pseudocode of atomic assembly instruction

```c
int CompareAndSwap(int *address, int expected, int new) {
    if (*address == expected) {
        *address = new; // success
        return 1;
    }
    return 0; // failure
}
```

- Use with the following:

```c
void AtomicIncrement(int *value, int amount) {
    do {
        int old = *value;
    } while (CompareAndSwap(value, old, old + amount) == 0);
}
```

Deadlock Prevention more wait-free

// mutex-based

```c
void insert(int value) {
    node_t *n = malloc(sizeof(node_t));
    n->value = value;
    pthread_mutex_lock(listlock); // begin critical section
    n->next  = head;
    head     = n;
    pthread_mutex_unlock(listlock); // end critical section
}
```

// fixed

```c
void insert(int value) {
    node_t *n = malloc(sizeof(node_t)); assert(n != NULL);
    n->value = value;
    do{
        n->next = head;
    } while (CompareAndSwap(&head, n->next, n) == 0);
}
```
Deadlock Avoidance

When a process requests an available resource, system must decide if immediate allocation leaves the system in a safe state.

- System is in *safe state* if there exists:
 - sequence \(<P_1, P_2, \ldots, P_n>\) of ALL the processes in the systems such that for each \(P_i\), the resources that \(P_i\) can still request can be satisfied by currently available resources + resources held by all \(P_j\) s.t. \(j < i\)

- That is:
 - If \(P_i\)'s resource needs are not immediately available, then \(P_i\) can wait until all \(P_j\) have finished
 - When \(P_j\) is finished, \(P_i\) can obtain needed resources, execute, return allocated resources, and terminate
 - When \(P_i\) terminates, \(P_{i+1}\) can obtain its needed resources, …

Deadlock Avoidance

- In other words:
 - System is in safe state \(\rightarrow\) no deadlocks
 - System is in unsafe state \(\rightarrow\) possibility of deadlocks
 - Avoidance of unsafe states ensure no deadlocks.
Deadlock Avoidance

safe states

- Single instance of a resource type
 - Use a resource-allocation graph

- Multiple instances of resource types
 - Use the banker’s algorithm

Deadlock Avoidance

safe states

- New \textit{claim} edge $P_i \rightarrow R_j$ indicates P_i may request resource R_j. (represented by dashed line)
- \textit{Claim} edge converts to \textit{request} edge when a process requests a resource
- \textit{Request} edge converted to an \textit{assignment} edge when the resource is allocated to the process
- When a resource is released by a process, \textit{assignment} edge reconverts to a \textit{claim} edge

- Resources must be \textit{claimed} a priori in the system.
Deadlock Avoidance safe states

A request by P_i for resource R_j can be granted only if converting the request edge to an assignment edge does not result in the formation of a cycle in the resource allocation graph.

Deadlock Mitigation dealing with it

- Maintain wait-for graph
 - Nodes are processes
 - $P_i \rightarrow P_j$ if P_i is waiting for resource held by P_j

- Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists a deadlock.

- An algorithm to detect a cycle in a graph requires an order of n^2 operations, where n is the number of vertices in the graph.
Deadlock Mitigation dealing with it

- Construct the waits for graph
- Check for cycles
- Pick *any* thread of the cycle and kill it

Deadlock Mitigation ignoring it

“Not everything worth doing is worth doing well” - Tom West

- Consequence may be
 - minor
 - very rare