
Concurrency
● Exam 1
● 26 - Concurrency
● 27 - Overview, and POSIX threads (pthreads)
● 28 - Locks
● 29 - Concurrent Data Structures
● 30 Condition Variables
● 31 - Semaphores
● 32 - Common Problems (including deadlocks)
● 33 - Event-Based Concurrency

274

Semaphores

● wait()
● decrement value by one
● wait if resulting value negative

● post()
● increment value by one
● if one or more threads waiting: wake one

The value, when negative, is the number of waiting threads

275

Semantics
● mutex locks

● “binary semaphore”
● lock by calling wait()
● unlock by calling post()
● initial value of

● ordering primitive (like a condition variable)
● “counting semaphore”
● parent waiting for child, sharing a semaphore

● parent calls wait()
● child calls post()
● initial value?

In general, how to determine the initial value?
● how many of your resources you are willing to give out?

0

1

276

Producer-Consumer back to the basics

277

Prod-Cons semaphores

Assume MAX = 1,
initially empty,
multiple consumers and producers

all good!

278

Prod-Cons semaphores, flawed

Problem is we are not
enforcing mutual exclusion
over the put() and get().

Need to add mutual
exclusion back in!

Assume MAX = 10,
initially empty,
multiple consumers and producers

279

Prod-Cons semaphores, fixed Deadlock!Deadlock!

empty buffer
consumer runs, blocks
producer runs, blocks

280

Prod-Cons semaphores fixed again

281

Reader-writer Locks
Either
● one or more readers, or
● a single writer
may be in the critical section at one time.

282

Issues?

Reader-writer Locks via semaphores

readers

writer

Issues?
How to fix?

283

Baboons and the River by semaphore

sem_t rope_capacity;
sem_t east_mutex, west_mutex;
pthread_mutex_t mutex; // shared

int east_count = 0;
int west_count = 0;

int main() {
 // Initialize semaphores
 sem_init(&rope_capacity, 0, 3);
 sem_init(&east_mutex, 0, 1);
 sem_init(&west_mutex, 0, 1);
 pthread_mutex_init(&mutex, NULL);
 …
 pthread_create(&baboons[i], NULL, eastward_baboon, NULL);
 …

284

Baboons and the River by semaphore

int main() {
 // Initialize semaphores
 // Semaphores
 sem_t east, west, dir, rope;
 int easts = 0, wests = 0;
 sem_init(&east, 0, 1);
 sem_init(&west, 0, 1);
 sem_init(&dir, 0, 1);
 sem_init(&rope, 0, 3);

 ...

void *east_baboon(void *arg) {
 sem_wait(&east);
 if (++easts == 1) {
 sem_wait(&dir); // Block westward movement
 }
 sem_post(&east);

 sem_wait(&rope); // Ensure at most 3 baboons on the rope
 printf("Baboon going EAST…\n”);
 sleep(1); // Simulate crossing
 sem_post(&rope);

 sem_wait(&east);
 if (--easts == 0) {
 sem_post(&dir); // Allow westward movement if no eastward baboons left
 }
 sem_post(&east);

 return NULL;
}

void *west_baboon(void *arg); // symmetric 285

Baboons and the River by semaphore

What about starvation?
● could use a synchronized queue
● all baboons, east and west, go onto queue in order of

arrival
● baboon pops off queue if same polarity as those on rope,

and if there are fewer than three currently on the rope

286

Dining Philosophers! semaphores

pic from Wikipedia

What could go wrong?

● deadlock
● cause: symmetry
● fix: asymmetry

287

● Necessary conditions for deadlock
● Mutual exclusion - Threads claim exclusive control of

resources (binary semaphores)
● Hold and wait - Threads hold resources while waiting for

additional resources (semaphore waits)
● No preemption - Resources cannot be removed from threads

that hold them (semaphores cannot be taken by force)
● Circular wait - There exists a chain of threads such that each

holds one or more resources that are requested by the next
thread in the chain (philosophers)

● What to do?
● prevent
● avoid
● deal with when they occur
● pretend they never happen

Deadlocks more generally

288

Resource Allocation Graph
A set of vertices V and a set of edges E:

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set of all the processes in the system

• R = {R1, R2, …, Rm}, the set of all resource types in the system

• request edge: directed edge Pi → Rj

• assignment edge: directed edge Rj → Pi

289

● Process

● Resource type with 4 instances

● Pi requests instance of Rj

● Pi is holding an instance of Rj

Resource Allocation Graph (cont.)

Pi
Rj

Pi
Rj

290

● P1 requesting instance of R1
● one R1 held by P2
● P2 requesting instance of R2
● one R2 held by P3
● distinct R3 instances held by P1 and P2

Resource Allocation Graph example

R3 R4

R1 R2

P1 P2 P3

291

