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Semaphores

● wait() 
● decrement value by one 
● wait if resulting value negative 

● post() 
● increment value by one 
● if one or more threads waiting: wake one 

The value, when negative, is the number of waiting threads
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Semantics
● mutex locks 

● “binary semaphore” 
● lock by calling wait() 
● unlock by calling post() 
● initial value of  

● ordering primitive (like a condition variable) 
● “counting semaphore” 
● parent waiting for child, sharing a semaphore 

● parent calls wait() 
● child calls post() 
● initial value?    

In general, how to determine the initial value? 
● how many of your resources you are willing to give out?

0

1
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Producer-Consumer back to the basics
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Prod-Cons semaphores

Assume MAX = 1, 
initially empty, 
multiple consumers and producers

all good!
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Prod-Cons semaphores, flawed

Problem is we are not  
enforcing mutual exclusion 
over the put() and get(). 

Need to add mutual  
exclusion back in!

Assume MAX = 10, 
initially empty, 
multiple consumers and producers
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Prod-Cons semaphores, fixed Deadlock!Deadlock! 

empty buffer 
consumer runs, blocks 
producer runs, blocks
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Prod-Cons semaphores fixed again
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Reader-writer Locks
Either 
● one or more readers, or 
● a single writer 
may be in the critical section at one time.
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Issues?

Reader-writer Locks via semaphores

readers

writer

Issues? 
How to fix?
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Baboons and the River by semaphore

sem_t   rope_capacity; 
sem_t   east_mutex, west_mutex; 
pthread_mutex_t  mutex; // shared 

int   east_count = 0; 
int   west_count = 0; 

int main() { 
    // Initialize semaphores 
    sem_init(&rope_capacity, 0, 3); 
    sem_init(&east_mutex, 0, 1); 
    sem_init(&west_mutex, 0, 1); 
    pthread_mutex_init(&mutex, NULL); 
        … 
        pthread_create(&baboons[i], NULL, eastward_baboon, NULL); 
        …
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Baboons and the River by semaphore

int main() { 
    // Initialize semaphores 
    // Semaphores 
    sem_t east, west, dir, rope; 
    int easts = 0, wests = 0; 
    sem_init(&east, 0, 1); 
    sem_init(&west, 0, 1); 
    sem_init(&dir, 0, 1); 
    sem_init(&rope, 0, 3); 

    ... 
     

void *east_baboon(void *arg) { 
    sem_wait(&east); 
    if (++easts == 1) {   
        sem_wait(&dir);  // Block westward movement 
    } 
    sem_post(&east); 

    sem_wait(&rope);  // Ensure at most 3 baboons on the rope 
    printf("Baboon going EAST…\n”); 
    sleep(1);  // Simulate crossing 
    sem_post(&rope); 

    sem_wait(&east); 
    if (--easts == 0) { 
        sem_post(&dir);  // Allow westward movement if no eastward baboons left 
    } 
    sem_post(&east); 

    return NULL; 
} 

void *west_baboon(void *arg); // symmetric 285



Baboons and the River by semaphore

What about starvation? 
● could use a synchronized queue 
● all baboons, east and west, go onto queue in order of 

arrival 
● baboon pops off queue if same polarity as those on rope, 

and if there are fewer than three currently on the rope
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Dining Philosophers! semaphores

pic from  Wikipedia

What could go wrong? 

● deadlock 
● cause: symmetry 
● fix: asymmetry
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● Necessary conditions for deadlock 
● Mutual exclusion - Threads claim exclusive control of 

resources (binary semaphores) 
● Hold and wait - Threads hold resources while waiting for 

additional resources  (semaphore waits) 
● No preemption - Resources cannot be removed from threads 

that hold them (semaphores cannot be taken by force) 
● Circular wait - There exists a chain of threads such that each 

holds one or more resources that are requested by the next 
thread in the chain (philosophers) 

● What to do? 
● prevent 
● avoid 
● deal with when they occur 
● pretend they never happen

Deadlocks more generally
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Resource Allocation Graph
A set of vertices V and a set of edges E: 

• V is partitioned into two types: 
• P = {P1, P2, …, Pn}, the set of all the processes in the system 

• R = {R1, R2, …, Rm}, the set of all resource types in the system 

• request edge: directed edge  Pi → Rj 

• assignment edge: directed edge  Rj → Pi
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● Process 

● Resource type with 4 instances 

● Pi requests instance of Rj 

● Pi is holding an instance of Rj

Resource Allocation Graph (cont.)

Pi
Rj

Pi
Rj
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● P1 requesting instance of R1 
● one R1 held by P2 
● P2 requesting instance of R2 
● one R2 held by P3 
● distinct R3 instances held by P1 and P2

Resource Allocation Graph example

R3 R4

R1 R2

P1 P2 P3
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