
Concurrency
● Exam 1
● 26 - Concurrency
● 27 - Overview, and POSIX threads (pthreads)
● 28 - Locks
● 29 - Concurrent Data Structures
● 30 Condition Variables
● 31 - Semaphores
● 32 - Common Problems (including deadlocks)
● 33 - Event-Based Concurrency

292

● P2 R2 P3 R3 P2 cycle (and part of a deadlock)
● R3 P1 R1 P2 not a cycle

→ → → →
→ → →

Resource Allocation Graph deadlock

R3 R4

R1 R2

P1 P2 P3

1. deadlock requires cycle
2. not all cycles are deadlocks (if multiple

instances of some resources)

293

Handling Deadlocks how to fix

● What to do?
● prevent by constraining how resource requests made
● avoid by filtering dangerous actions per-request
● deal with when they occur
● pretend they never happen

294

Deadlock Prevention
● Try to prevent one of the four conditions from holding true

● Difficult to eliminate mutual exclusion
● Prevent threads from requesting new resources when

holding other resources (eliminates hold and wait)
● Require threads not immediately able to get all needed

resources to give up those they have (eliminates no
preemption)

● Require agreed-upon resource acquisition ordering
(eliminates circular waiting).

Prevents at least one of the conditions from holding by
constraining how resource requests made.

295

Deadlock Prevention hold and wait

● Acquire all locks at once:

● So we never wait, but?
● prevention lock is global
● need complete information on locks to be acquired

pthread_mutex_lock(prevention); // begin acquisition
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);
...
pthread_mutex_unlock(prevention); // end

296

Deadlock Prevention no preemption

● try locks:
● atomically grab lock if available, or return w/ error

● Works even if other thread chooses different order.

● However: livelock:
● Possible, though unlikely, that the threads both back off forever. Fix with

random delays.
● Also encapsulation:

● locks acquisitions may be hidden by function calls, making reset to initial
state difficult

● language approaches can work, or just avoid encapsulation

top:
 pthread_mutex_lock(L1); // begin acquisition
 if (pthread_mutex_trylock(L2) != 0) {
 pthread_mutex_unlock(L1);
 goto top;
 }

297

Deadlock Prevention circular wait

● Don’t do this:

● Agree on lexicographic ordering on lock acquisitions:

● or address-based:

T1: pthread_mutex_lock(m1);
 pthread_mutex_lock(m2);

T2: pthread_mutex_lock(m2);
 pthread_mutex_lock(m1);

1 2

if (m1 > m2) { // grab in high-to-low address order
 pthread_mutex_lock(m1);
 pthread_mutex_lock(m2);
} else {
 pthread_mutex_lock(m2);
 pthread_mutex_lock(m1);
}

T2: pthread_mutex_lock(m1);
 pthread_mutex_lock(m2);

298

Deadlock Prevention mutual exclusion

● Lock-free and wait-free data structures and algorithms
● use atomic instructions such as CompareAndSwap

● Atomically increment a counter w/o locks:
void AtomicIncrement(int *value, int amount) {
 do {
 int old = *value;
 } while (CompareAndSwap(value, old, old + amount) == 0);
}

int CompareAndSwap(int *address, int expected, int new) {
 if (*address == expected) {
 *address = new;
 return 1; // success
 }
 return 0; // failure
}

// pseudocode of atomic assembly instruction

299

Deadlock Prevention more wait-free

void insert(int value) {
 node_t *n = malloc(sizeof(node_t));
 n->value = value;
 pthread_mutex_lock(listlock); // begin critical section
 n->next = head;
 head = n;
 pthread_mutex_unlock(listlock); // end critical section
}

// mutex-based

void insert(int value) {
 node_t *n = malloc(sizeof(node_t)); assert(n != NULL);
 n->value = value;
 do{
 n->next = head;
 } while (CompareAndSwap(&head, n->next, n) == 0);
}

// wait-free

300

Deadlock Avoidance safe states

OS uses info on which resource requests a process might make to
filter dangerous actions on a per-request basis.

• System is in safe state if there exists:
• safe sequence <P1, P2, …, Pn> of ALL processes in the systems such

that for each Pi, the resources that Pi can still request can be satisfied
by currently available resources + resources held by all Pj s.t. j < i

• That is:
• If Pi’s resource needs are not immediately available, then Pi can wait

until all Pj s.t. j < i have finished
• When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate
• When Pi terminates, Pi +1 can obtain its needed resources, …

301

● In other words:
● unsafe state converting a single request to a claim

can result in deadlock

● safe state converting a single request cannot result in
deadlock

● Avoidance of unsafe states ensures no deadlocks.

⟶

⟶

Deadlock Avoidance safe states

302

● Single instance of a resource type
● Use a resource-allocation graph

● Multiple instances of resource types
● Use Dijkstra’s banker algorithm

Deadlock Avoidance safe states

303

● New claim edge indicates may request resource
. (represented by dashed line)

● Claim edge converts to request edge when a process
requests the resource (solid line from process to resource)

● Request edge converted to an assignment edge when the
resource is allocated to the process (solid line from resource
to process)

● When a resource is released by a process, assignment edge
reverts to a claim edge

● All resources must be claimed a priori.

Pi → Rj Pi
RJ

Deadlock Avoidance safe states

304

R3

R1

P1 P2

safe

Requests granted only if converting the request edge to an
assignment edge does not result in a cycle

Deadlock Avoidance safe states (bad)

unsafe
(granting R3 to P2
causes a cycle)

R3

R1

P1 P2

305

R3

R1

P1 P2

deadlock
(if P1 converts claim

 to request)

R3

R1

P1 P2

safe

Requests granted only if converting the request edge to an
assignment edge does not result in a cycle

Deadlock Avoidance safe states (good)

safe
(this would have been fine)

R3

R1

P1 P2

306

● Maintain waits-for graph:
● Nodes are processes
● if is waiting for resource held by

● Periodically invoke an algorithm that searches for a cycle
in the graph. If there is a cycle, there exists a deadlock

● An algorithm to detect a cycle in a graph requires an
order of operations, where , are the number
of vertices,edges in the graph

Pi → Pj Pi Pj

O(n + e) n e

Deadlock Mitigation dealing with it

307

● Construct the waits-for graph
● Check for cycles
● Pick any thread of a cycle and kill it

Deadlock Mitigation dealing with it

308

Deadlock Mitigation ignoring it

“Not everything worth doing is worth doing well” - Tom West

● Consequence may be:
● minor
● rare

309

Concurrency
● Exam 1
● 26 - Concurrency
● 27 - Overview, and POSIX threads (pthreads)
● 28 - Locks
● 29 - Concurrent Data Structures
● 30 Condition Variables
● 31 - Semaphores
● 32 - Common Problems (including deadlocks)
● 33 - Event-Based Concurrency

310

Event-Based Concurrency who needs threads?

● Problems w/ thread-base concurrency:
● software engineering:

● missing locks, deadlocks, poor error handling
● scheduling

● programmer has little control over scheduling
● Event-based concurrency often used in:

● GUI-based apps
● internet servers (micro-services, etc.)

● Basic idea:
● main thread waits for events:

● do the (typically small) amount of work required
● take actions, such as replies, scheduling other events

311

Event-Loop who needs threads?

● Basic approach:
● wait for something (an “event”) to occur
● perform checks based on event type
● call event handler

● Example:

● How to get new events?
● select() or poll()

312

1. while(1){
2. events = getEvents();
3. for(e in events)
4. processEvent(e); // event handler
5. }

select() as an example

● lets server know that:
● new packet has arrived
● room in outgoing socket
● error conditions
● the timeout lets select poll (“0” means synchronous)

313

int select(int nfds,
 fd_set * restrict readfds,
 fd_set * restrict writefds,
 fd_set * restrict errorfds,
 struct timeval * restrict timeout);

314

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <sys/time.h>
4. #include <sys/types.h>
5. #include <unistd.h>
6.
7. int main(void) {
8. // open and set up a bunch of sockets (not shown)
9. // main loop
10. while (1) {
11. // initialize the fd_set to all zero
12. fd_set readFDs;
13. FD_ZERO(&readFDs);
14.
15. // now set the bits for the descriptors
16. // this server is interested in
17. // (for simplicity, all of them from min to max)
18. int fd;
19. for (fd = minFD; fd < maxFD; fd++)
20. FD_SET(fd, &readFDs);
21.
22. // do the select
23. int rc = select(maxFD+1, &readFDs, NULL, NULL, NULL);
24.
25. // check which actually have data using FD_ISSET()
26. int fd;
27. for (fd = minFD; fd < maxFD; fd++)
28. if (FD_ISSET(fd, &readFDs))
29. processFD(fd);
30. }
31. }

select() as an example

315

● Why is this better?
● assume a single CPU, no preemption
● only needs a single thread
● concurrency bugs can not happen
● handling events === scheduling

● But:
● we have many cores
● blocking system calls!

● if we only have a single thread, what do we do when
waiting?

● the entire server is waiting

● we can not allow blocking calls

Event-Loop simplest case

316

● Operating systems have asynchronous versions of I/O:
● App issues I/O request and returns immediately
● interface in Mac OS X:

● or use signals and signal handlers to asynchronously create
appropriate new events when I/O completes or fails

Event-Loop asynchronous I/O

struct aiocb {
 int aio_fildes; /* File descriptor */
 off_t aio_offset; /* File offset */
 volatile void *aio_buf; /* Location of buffer */
 size_t aio_nbytes; /* Length of transfer */
};

int aio_read(struct aiocb *aiocbp); // start async read

int aio_error(const struct aiocb *aiocbp); // check for error

 // or completion

317

● But how to pass state to the completion handler?
● continuations:

● record state required for async I/O in some data structure
● look it up when the I/O completes

● But the world is more complicated now:
● single-threaded event loop:

● i.e. Node.js (special cases for I/O and worker threads)
● multi-threaded event loops:

● Python’s asyncio, Java’s ExecutorService
● often used w/ locks, semaphores, and msg queues

● Actor model (Akka, Erlang):
● each actor processes msgs asynchronously
● actors interact via msgs instead of shared memory

Event-Loop asynchronous I/O

