Concurrency

. (including deadlocks)
33 - Event-Based Concurrency

292

Resource Allocation Graph deaocx

R, R,
\
(Py)

1. deadlock requires cycle
2. not all cycles are deadlocks (if multiple
instances of some resources)

o
\

Yo

oo
oo

R,

Rs

o Por—o> Ro—>P3—> R3— P>
e RA3—>Pi—> Ri— P>

cycle (and part of a deadlock)
not a cycle

293

Handling Deadlocks row i

e \What to do?
e prevent by constraining how resource requests made
e avoid by filtering dangerous actions per-request
o deal with when they occur
» pretend they never happen

294

Deadlock Prevention

e Try to prevent one of the four conditions from holding true
o Difficult to eliminate mutual exclusion
e Prevent threads from requesting new resources when
holding other resources (eliminates hold and wait)

e Require threads not immediately able to get all needed
resources to give up those they have (eliminates no
preemption)

* Require agreed-upon resource acquisition ordering
(eliminates circular waiting).

Prevents at least one of the conditions from holding by
constraining how resource requests made.

295

Deadlock Prevention rooang wa

e Acquire all locks at once:

pthread mutex lock(prevention); // begin acquisition
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);

pthread mutex unlock(prevention); // end

e SO we never wait, but?
e prevention lock is global
e need complete information on locks to be acquired

296

Dead |OCk Pl’eveﬂthﬂ no preemption

e frylocks:
e atomically grab lock if available, or return w/ error

top:
pthread mutex lock(L1); // begin acquisition
if (pthread_mutex_ trylock(L2) != 0) {
pthread mutex unlock(L1);
goto top;

}
e Works even if other thread chooses different order.

e However: livelock:
» Possible, though unlikely, that the threads both back off forever. Fix with
random delays.
e Also encapsulation:
» locks acquisitions may be hidden by function calls, making reset to initial
state difficult
e |language approaches can work, or just avoid encapsulation

297

Deadlock Prevention cicuer wat

e Don’t do this:

T1: pthread_mutex_lock(ml); (1) T2: pthread_mutex_lock(m2); (@)
pthread mutex lock(m2); pthread mutex lock(ml);

e Agree on lexicographic ordering on lock acquisitions:

T2: pthread_mutex_lock(ml);
pthread mutex lock(m2);

e Or address-based:

if (ml > m2) { // grab in high-to-low address order
pthread mutex_ lock(ml);
pthread mutex lock(m2);
} else {
pthread mutex_ lock(m2);
pthread _mutex_ lock(ml);

298

Dead |OC k Pl’eve ﬂtIO N mutual exclusion

» Lock-free and wait-free data structures and algorithms
e uSe atomic instructions such as CompareAndSwap

// pseudocode of atomic assembly instruction

int CompareAndSwap(int *address, int expected, int new) {
if (*address == expected) {
*address = new;
return 1; // success
}
return 0; // failure
}

o Atomically increment a counter w/o locks:

void AtomicIncrement(int *value, int amount) {
do {
int old = *value;
} while (CompareAndSwap(value, old, old + amount) == 0);

299

Dead |OCk Pl’eveﬂthﬂ more wait-free

// mutex-based

void insert(int value) {
node_t *n = malloc(sizeof(node_t));
n->value = value;

pthread mutex lock(listlock); // begin critical section
n->next = head;
head =n,;

pthread mutex unlock(listlock); // end critical section

// wait-free

void insert(int value) {

node_t *n = malloc(sizeof(node_t)); assert(n != NULL);
n->value = value;
do{

n->next = head;
} while (CompareAndSwap(&head, n->next, n) == 0);

300

Dead |OCk AVOIdaﬂ Ce Safe states

OS uses info on which resource requests a process might make to
filter dangerous actions on a per-request basis.

« System is in safe state if there exists:

- safe sequence <P,, P, ..., P.> of ALL processes in the systems such
that for each P, the resources that P, can still request can be satisfied
by currently available resources + resources held by all P;s.t. j <

* That is:
« If P’s resource needs are not immediately available, then P, can wait
until all P.st.j<i have finished
« When P, is finished, P, can obtain needed resources, execute, return
allocated resources, and terminate
« When P, terminates, P, , can obtain its needed resources, ...

i+1

301

Dead |OCk AVOIdaﬂ Ce Safe states

e |n other words:

e unsafe state — converting a single request to a claim
can result in deadlock

o safe state — converting a single request cannot result in
deadlock

e Avoidance of unsafe states ensures no deadlocks.

unsafe
deadlock

/%

302

Dead |OCk AVOIdaﬂ Ce Safe states

e Single instance of a resource type
o Use a resource-allocation graph

o Multiple instances of resource types
o Use Dijkstra’s banker algorithm

303

Dead |OCk AVOIdaﬂ Ce Safe states

. New claim edge P; — Rj indicates P; may request resource
R;. (represented by dashed line)

e (Claim edge converts to request edge when a process
requests the resource (solid line from process to resource)

» Request edge converted to an assignment edge when the
resource is allocated to the process (solid line from resource
to process)

 When aresource is released by a process, assignment edge
reverts to a claim edge

o All resources must be claimed a priori.

304

Dead |OCk AVOIdaﬂ Ce safe states (bad)

R, R, R,

.

. ,'
+ ¢
A .

/ / /
2 2 2
v/ N/

R3 RS R3
safe unsafe deadlock
(granting Rz to P2 (if Pt converts claim
causes a cycle) fo request)

Requests granted only if converting the request edge to an

assignment edge does not result in a cycle
305

Dead |OCk AVOIdaﬂ Ce safe states (good)

R, R,

L) ¢ 4
.
. 'l 'l
A .

Rs Rs

safe safe
(this would have been fine)

Requests granted only if converting the request edge to an

assignment edge does not result in a cycle
306

Deadlock Mltlgathﬂ dealing with it

e Maintain waits-for graph:
 Nodes are processes
. P — Pj if P; is waiting for resource held by Pj

» Periodically invoke an algorithm that searches for a cycle
in the graph. If there is a cycle, there exists a deadlock

e An algorithm to detect a cycle in a graph requires an
order of O(n + e) operations, where n,e are the number
of vertices,edges in the graph

307

Deadlock Mltlgathﬂ dealing with it

(P
R2 HS

(@) (b)

Resource-Allocation Graph ~ Corresponding wait-for graph

o Construct the waits-for graph
o (Check for cycles
» Pick any thread of a cycle and Kill it

308

Dead|OCk Mltlgathﬂ ignoring it

“Not everything worth doing is worth doing well” - Tom West

e Consequence may be:
e minor
o rare

309

Concurrency

33 - Event-Based Concurrency

310

EVGHT-BaSGd Concurrency who needs threads?

e Problems w/ thread-base concurrency:
e software engineering:
e missing locks, deadlocks, poor error handling
e scheduling
e programmer has little control over scheduling
e Event-based concurrency often used in:
e GUI-based apps
e internet servers (micro-services, etc.)
e Basic idea:
e main thread waits for events:
e do the (typically small) amount of work required
e take actions, such as replies, scheduling other events

311

EVG ﬂt - LOO p who needs threads?

e Basic approach:
e wait for something (an “event”) to occur
e perform checks based on event type
e call event handler

e Example:
1. while(1){
2. events = getEvents();
3. for(e in events)
4. processEvent (e); // event handler
5. }

 How to get new events?
* select () Ofpoll ()

312

select () as an example

int select (int nfds,
fd set * restrict readfds,
fd set * restrict writefds,
fd set * restrict errorfds,
struct timeval * restrict timeout);

e lets server know that:
e new packet has arrived
e room in outgoing socket
e error conditions
o thetimeout lets select poll (“O” means synchronous)

313

select () as an example

1. #include <stdio.h>

2. #include <stdlib.h>

3. #include <sys/time.h>

4. #include <sys/types.h>

5. #include <unistd.h>

6.

7. int main(void) {

8. // open and set up a bunch of sockets (not shown)
9. // main loop

10. while (1) |

11. // initialize the fd set to all zero
12. fd_set readFDs;

13. FD ZERO (&readFDs) ;

14.

15. // now set the bits for the descriptors
16. // this server is interested in

17. // (for simplicity, all of them from min to max)
18. int fd;

19. for (fd = minFD; fd < maxFD; fd++)

20. FD SET (fd, &readFDs);

21.

22. // do the select

23. int rc = select (maxFD+1, &readfFDs, NULL, NULL, NULL);
24.

25. // check which actually have data using FD ISSET ()
26. int fd;

27. for (fd = minFD; fd < maxFD; fd++)

28. if (FD_ISSET(fd, &readFDs))
29. processFD (£fd) ;

30. }

31. 1}

314

EVG ﬂt - LOO p simplest case

e Why is this better?
e assume a single CPU, no preemption
e only needs a single thread
e concurrency bugs can not happen
e handling events === scheduling
o But:
e we have many cores
e Dblocking system calls!
» if we only have a single thread, what do we do when
waiting?
e the entire server is waiting

e we can not allow blocking calls

315

EVG ﬂt - LOO p asynchronous I/O

o QOperating systems have asynchronous versions of 1/O:
e App issues I/O request and returns immediately
e interface in Mac OS X:

struct aiocb {
int aio_fildes; /* File descriptor */
off t aio offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size t aio nbytes; /* Length of transfer */
}i
int ailo_read(struct aiocb *aiocbp); // start async read
int aio_error(const struct aiocb *aiocbp); // check for error

// or completion

e Oruse signals and signal handlers to asynchronously create
appropriate new events when |/O completes or fails

316

EVG ﬂt - LOO p asynchronous I/O

e But how to pass state to the completion handler?
e continuations:
e record state required for async I/0O in some data structure
e |ook it up when the I/O completes
e But the world is more complicated now:
e single-threaded event loop:
e i.e.Node.js (special cases for I/O and worker threads)
e multi-threaded event loops:
e Python’s asyncio, Java’s ExecutorService
e often used w/ locks, semaphores, and msg queues
e Actor model (Akka, Erlang):
e each actor processes msgs asynchronously
e actors interact via msgs instead of shared memory

317

