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● P2  R2  P3  R3  P2         cycle (and part of a deadlock) 
● R3  P1  R1  P2              not a cycle

→ → → →
→ → →

Resource Allocation Graph deadlock

R3 R4

R1 R2

P1 P2 P3

1. deadlock requires cycle 
2. not all cycles are deadlocks (if multiple 

instances of some resources)
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Handling Deadlocks how to fix

● What to do? 
● prevent by constraining how resource requests made 
● avoid by filtering dangerous actions per-request 
● deal with when they occur 
● pretend they never happen
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Deadlock Prevention
● Try to prevent one of the four conditions from holding true 

● Difficult to eliminate mutual exclusion 
● Prevent threads from requesting new resources when 

holding other resources (eliminates hold and wait) 
● Require threads not immediately able to get all needed 

resources to give up those they have (eliminates no 
preemption) 

● Require agreed-upon resource acquisition ordering 
(eliminates circular waiting). 

Prevents at least one of the conditions from holding by 
constraining how resource requests made.
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Deadlock Prevention hold and wait

● Acquire all locks at once: 

● So we never wait, but? 
● prevention lock is global 
● need complete information on locks to be acquired

pthread_mutex_lock(prevention);  // begin acquisition 
pthread_mutex_lock(L1); 
pthread_mutex_lock(L2); 
... 
pthread_mutex_unlock(prevention);  // end
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Deadlock Prevention no preemption

● try locks: 
● atomically grab lock if available, or return w/ error 

● Works even if other thread chooses different order.  

● However: livelock: 
● Possible, though unlikely, that the threads both back off forever. Fix with 

random delays. 
● Also encapsulation:  

● locks acquisitions may be hidden by function calls, making reset to initial 
state difficult 

● language approaches can work, or just avoid encapsulation

top:  
    pthread_mutex_lock(L1);  // begin acquisition 
  if (pthread_mutex_trylock(L2) != 0) { 
      pthread_mutex_unlock(L1); 
      goto top; 
  }
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Deadlock Prevention circular wait

● Don’t do this: 

● Agree on lexicographic ordering on lock acquisitions: 

● or address-based:

T1: pthread_mutex_lock(m1); 
 pthread_mutex_lock(m2);

T2: pthread_mutex_lock(m2); 
 pthread_mutex_lock(m1);

1 2

if (m1 > m2) {        // grab in high-to-low address order 
    pthread_mutex_lock(m1); 
    pthread_mutex_lock(m2); 
} else { 
    pthread_mutex_lock(m2); 
    pthread_mutex_lock(m1); 
}

T2: pthread_mutex_lock(m1); 
 pthread_mutex_lock(m2);
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Deadlock Prevention mutual exclusion

● Lock-free and wait-free data structures and algorithms 
● use atomic instructions such as CompareAndSwap 

● Atomically increment a counter w/o locks:
void AtomicIncrement(int *value, int amount) { 
    do { 
        int old = *value; 
    } while (CompareAndSwap(value, old, old + amount) == 0); 
}

int CompareAndSwap(int *address, int expected, int new) { 
    if (*address == expected) { 
        *address = new; 
        return 1;                         // success 
    } 
    return 0;                             // failure 
}

// pseudocode of atomic assembly instruction
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Deadlock Prevention more wait-free

void insert(int value) { 
    node_t *n = malloc(sizeof(node_t)); 
    n->value = value; 
    pthread_mutex_lock(listlock);   // begin critical section 
    n->next  = head; 
    head     = n; 
    pthread_mutex_unlock(listlock); // end critical section 
}

// mutex-based

void insert(int value) { 
    node_t *n = malloc(sizeof(node_t)); assert(n != NULL); 
    n->value = value; 
    do{ 
        n->next = head; 
    } while (CompareAndSwap(&head, n->next, n) == 0); 
}

// wait-free
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Deadlock Avoidance safe states

OS uses info on which resource requests a process might make to 
filter dangerous actions on a per-request basis. 

• System is in safe state if there exists: 
• safe sequence <P1, P2, …, Pn> of ALL processes  in the systems such 

that for each Pi, the resources that Pi can still request can be satisfied 
by currently available resources + resources held by all Pj s.t. j < i 

• That is: 
• If Pi’s resource needs are not immediately available, then Pi can wait 

until all Pj s.t. j < i have finished 
• When Pj is finished, Pi can obtain needed resources, execute, return 

allocated resources, and terminate 
• When Pi terminates, Pi +1 can obtain its needed resources, … 
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● In other words: 
● unsafe state  converting a single request to a claim 

can result in deadlock 

● safe state  converting a single request cannot result in 
deadlock 

● Avoidance of unsafe states ensures no deadlocks.

⟶

⟶

Deadlock Avoidance safe states
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● Single instance of a resource type 
● Use a resource-allocation graph 

● Multiple instances of resource types 
● Use Dijkstra’s banker algorithm

Deadlock Avoidance safe states
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● New claim edge  indicates  may request resource 
. (represented by dashed line) 

● Claim edge converts to request edge when a process 
requests the resource (solid line from process to resource) 

● Request edge converted to an assignment edge when the 
resource is allocated to the process (solid line from resource 
to process) 

● When a resource is released by a process, assignment edge 
reverts to a claim edge 

● All resources must be claimed a priori.

Pi → Rj Pi
RJ

Deadlock Avoidance safe states
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R3

R1

P1 P2

safe

Requests granted only if converting the request edge to an 
assignment edge does not result in a cycle

Deadlock Avoidance safe states (bad)

unsafe 
(granting R3 to P2  
causes a cycle)

R3

R1

P1 P2
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R3

R1

P1 P2

deadlock 
(if P1 converts claim 

 to request)



R3

R1

P1 P2

safe

Requests granted only if converting the request edge to an 
assignment edge does not result in a cycle

Deadlock Avoidance safe states (good)

safe 
(this would have been fine)

R3

R1

P1 P2
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● Maintain waits-for graph: 
● Nodes are processes 
●  if  is waiting for resource held by  

● Periodically invoke an algorithm that searches for a cycle 
in the graph. If there is a cycle, there exists a deadlock 

● An algorithm to detect a cycle in a graph requires an 
order of  operations, where ,  are the number 
of vertices,edges in the graph

Pi → Pj Pi Pj

O(n + e) n e

Deadlock Mitigation dealing with it
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● Construct the waits-for graph 
● Check for cycles 
● Pick any thread of a cycle and kill it

Deadlock Mitigation dealing with it
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Deadlock Mitigation ignoring it

“Not everything worth doing is worth doing well” - Tom West 

● Consequence may be: 
● minor 
● rare
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Event-Based Concurrency who needs threads?

● Problems w/ thread-base concurrency: 
● software engineering: 

● missing locks, deadlocks, poor error handling 
● scheduling 

● programmer has little control over scheduling 
● Event-based concurrency often used in: 

● GUI-based apps 
● internet servers (micro-services, etc.) 

● Basic idea: 
● main thread waits for events: 

● do the (typically small) amount of work required 
● take actions, such as replies, scheduling other events
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Event-Loop who needs threads?

● Basic approach: 
● wait for something (an “event”) to occur 
● perform checks based on event type 
● call event handler 

● Example: 

● How to get new events? 
● select() or poll() 
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1.  while(1){ 
2.   events = getEvents(); 
3.   for( e in events ) 
4.    processEvent(e); // event handler 
5.  }

select() as an example

● lets server know that: 
● new packet has arrived 
● room in outgoing socket 
● error conditions 
● the timeout lets select poll (“0” means synchronous)
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int select(int nfds, 
 fd_set * restrict readfds, 
 fd_set * restrict writefds, 
 fd_set * restrict errorfds, 
 struct timeval * restrict timeout);
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1.  #include <stdio.h> 
2.  #include <stdlib.h> 
3.  #include <sys/time.h> 
4.  #include <sys/types.h> 
5.  #include <unistd.h> 
6.   
7.  int main(void) { 
8.   // open and set up a bunch of sockets (not shown) 
9.   // main loop 
10.   while (1) { 
11.    // initialize the fd_set to all zero 
12.    fd_set readFDs; 
13.    FD_ZERO(&readFDs); 
14.   
15.    // now set the bits for the descriptors 
16.    // this server is interested in 
17.    // (for simplicity, all of them from min to max) 
18.      int fd; 
19.    for (fd = minFD; fd < maxFD; fd++) 
20.     FD_SET(fd, &readFDs); 
21.   
22.    // do the select 
23.    int rc = select(maxFD+1, &readFDs, NULL, NULL, NULL); 
24.   
25.     // check which actually have data using FD_ISSET() 
26.    int fd; 
27.    for (fd = minFD; fd < maxFD; fd++) 
28.     if (FD_ISSET(fd, &readFDs)) 
29.      processFD(fd); 
30.   } 
31.  }

select() as an example
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● Why is this better? 
● assume a single CPU, no preemption 
● only needs a single thread 
● concurrency bugs can not happen 
● handling events === scheduling 

● But: 
● we have many cores 
● blocking system calls! 

● if we only have a single thread, what do we do when 
waiting? 

● the entire server is waiting 

● we can not allow blocking calls

Event-Loop  simplest case
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● Operating systems have asynchronous versions of I/O: 
● App issues I/O request and returns immediately  
● interface in Mac OS X: 

● or use signals and signal handlers to asynchronously create 
appropriate new events when I/O completes or fails

Event-Loop  asynchronous I/O

struct aiocb { 
 int aio_fildes;   /* File descriptor */ 
 off_t aio_offset;  /* File offset */ 
 volatile void *aio_buf;  /* Location of buffer */ 
 size_t aio_nbytes;  /* Length of transfer */ 
};

int aio_read(struct aiocb *aiocbp);  // start async read

int aio_error(const struct aiocb *aiocbp); // check for error 

 // or completion
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● But how to pass state to the completion handler? 
● continuations: 

● record state required for async I/O in some data structure 
● look it up when the I/O completes  

● But the world is more complicated now: 
● single-threaded event loop: 

● i.e. Node.js  (special cases for I/O and worker threads) 
● multi-threaded event loops: 

● Python’s asyncio, Java’s ExecutorService 
● often used w/ locks, semaphores, and msg queues 

● Actor model (Akka, Erlang): 
● each actor processes msgs asynchronously 
● actors interact via msgs instead of shared memory

Event-Loop  asynchronous I/O


