
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories

340

Persistence

Classic I/O Architecture
CPU Memory

 Graphics

Prototypical System Architecture

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

● How should I/O devices be integrated into systems?
● What are the general mechanisms?
● How can we make them efficient?

341

Modern Architecture

342

A Canonical Device

● status register: read current device state
● command register: send commands to device
● data register: read or write data a word at a time

343

Interaction w/ the canonical device

While (STATUS == BUSY)
 ; // wait until device is not busy
Write data to DATA register
Write command to COMMAND register
 (starts the device and executes the command)
While (STATUS == BUSY)
 ; // wait until device is done with your request

344

Interaction polling

● Polling:
● repeatedly reading status register to determine readiness
● simple
● inefficient:

● CPU occupied doing nothing
● switching to another ready process may be better

345

.1 1 1 1 1 p p p p p 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP“waiting IO”

Devices: interrupts

● send request
● block requesting process
● reschedule process only when interrupt signals completion

Po
lli

ng
In

te
rr

up
ts

346

● Fast jobs: first poll might have found job finished
● Hybrid: poll for a bit, then block

● Livelock: per-packet interrupts might monopolize CPU
● Coalescing: device delays to combine multiple interrupts

● Writing large blocks to device is a poor use of CPU:

Pr
og

 IO

Efficiency Issues with interrupts

347

DMA direct memory access

● Starting:
● write address, length of data block to device data registers
● start by writing to control register
● do something else

● Finish:
● raise interrupt to signal finish

348

● Programmed I/O:

● Direct Memory Access (DMA)

Pr
og

 IO
D

M
A

DMA vs Programmed I/O

349

Device Interaction
● How does the OS communicate w/ the device?

● I/O instructions: special instructions
● example: in and out instructions on x86

● memory-mapped I/O:
● device registers mapped to physical addresses
● use generic OS load and store instructions for

commands and data transfer
● But…but… there are many different devices!

● Encapsulate device-specific interactions in generic block
interface

350

File system abstraction

The File System Stack

kernel

Application

File System

Generic Block Layer

Device Driver [SCSI, ATA, etc]

Specific Block Interface [protocol-specific read/write]

Generic Block Interface [block read/write]

user

POSIX API [open, read, write, close, etc]

351

Issues remaining

● Devices w/ special capabilities
● might not be able to use w/ generic layer

● Bugs!
● device drivers are specific to hardware, written by

companies that build the hardware
● over 70% of linux source is in device drivers
● primary source of bugs and kernel crashes

352

Example Device: IDE interface

LBA = “logical block address”

353

I/O outline
● Wait for drive to be ready:

● read Status Register (0x1F7) until drive is not busy, and READY

● Write parameters to command registers:

● Write the sector count, logical block address (LBA) of the sectors to be accessed, and drive
number (master=0x00 or slave=0x10, as IDE permits just two drives) to command registers
(0x1F2-0x1F6)

● Start the I/O:

● issue read/write to command register (0x1F7)

● Data transfer (for writes):

● wait until drive status has READY and DRQ (drive request for data)

● write data to data port

● Handle interrupts:

● In the simplest case, handle an interrupt for each sector transferred; more complex approaches
allow batching and thus one final interrupt when the entire transfer is complete.

● Error handling:

● read the status register after each operation. If ERROR bit is on, read the error register for details

● determining readiness:

Example IDE Driver

355

static int ide_wait_ready() {

while (((int r = inb(0x1f7)) & IDE_BSY) || !(r & IDE_DRDY))

; // loop until drive isn’t busy

}

● queueing an I/O request:

● write parameters to command register, start the I/O:

Example IDE Driver

356

● handling completion interrupt:

Example IDE Driver

357

● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories

358

Persistence

358

Magnetic Hard Drives
● platter has set of concentric tracks
● each track divided into sectors
● sectors read by read-write head

359

Computing the Cost
● Cost is:

+ seek time: move to correct track
+ rotational delay: disk must rotate

until we get to correct sector
+ transfer time: time to read a

sector
● Also, disk has:

● track cache: head always
reading, remembering

● scheduler: more later…

360

