Persistence

e 36 - I/O Devices

e 37 - Hard Disk Drives

e 38-RAID

e 39 - File and Directories

340

Classic I/O Architecture

CPU Memory
<€ I I) Memory Bus
(proprietary)
- > General I/0 Bus
(e.g., PCI)
Graphics
» Peripheral /0 Bus

(e.g., SCSI, SATA, USB)

) OO O O

Prototypical System Architecture

e How should I/O devices be integrated into systems?
e What are the general mechanisms?

e How can we make them efficient? 241

Modern Architecture

PCle Memory
Graphics Interconnect

Graphics |« CPU -Memory

S
a
PCle eSATA
[| Disk
Network | Di |
Di__|
@ |
)
©
[\]
8
N
342
A Canonical Device
Registers: Status Command Data interface

Micro-controller(CPU) _
Memory (DRAM or SRAM or both) internals
Other Hardware-specific Chips

o status register: read current device state
e command register: send commands to device
e data register: read or write data a word at a time

343

| N te I’aCT | on w/ the canonical device

While (STATUS == BUSY)
; // wait until device is not busy
Write data to DATA register
Write command to COMMAND register
(starts the device and executes the command)
While (STATUS == BUSY)
; // wait until device is done with your request

344

| ﬂte raCtIOﬂ polling

“waiting 10”

1 | :task1 | P | :polling

CPU 11|11 (1|1 |p|p|P|lP|P|T|1]|1|1]1

Disk 1111111

Diagram of CPU utilization by polling

e Polling:
e repeatedly reading status register to determine readiness
e simple
e inefficient:
e (CPU occupied doing nothing

e switching to another ready process may be better
345

Devices: interrupts

CPU |1 (1]1]1]1 11117171

Polling

Disk 1111 11]1

CPU [1|1 1|1 |1 iy 1 |1 (1|11

Interrupts

Disk 11111

e send request
e Dblock requesting process
e reschedule process only when interrupt signals completion

346

Efficiency |SSUES win intermuprs

e Fast jobs: first poll might have found job finished
e Hybrid: poll for a bit, then block

o Livelock: per-packet interrupts might monopolize CPU
o (Coalescing: device delays to combine multiple interrupts

o Writing large blocks to device is a poor use of CPU:

>

CPU |1 1|1 |11 |c|c|c iy 1 1

Disk 11 (1]11

Prog 10

s task 1 Izl :task 2
: copy data from memory 347

D M A direct memory access

o Starting:
e write address, length of data block to device data registers
e start by writing to control register
e do something else
e Finish:
e raise interrupt to signal finish
: task 1 : task 2
copy data rom memory

CcPU |1|1|1|1|2|2|2|2|2|2|2|2|1|1|1|

DMA

Oisk EIERRNERED

348

DMA vs Programmed /O

e Programmed 1/O:

CPU |1 |1 |1]1]|1]|c|c|c IAr-uriayy i 1

Prog 10

Disk 1T (1 (1)1 1

o Direct Memory Access (DMA)

CPU [1 |1 |11 |1 Iy i- A 1 | 1

< DMA clc|ec
o

Disk 1 (1]1]1]1

E :task 1 @ :task 2
: copy data from memory

349

Device Interaction

 How does the OS communicate w/ the device?
e /O instructions: special instructions
e example: in and out instructions on x86
» memory-mapped I/O:
e device registers mapped to physical addresses

e use generic OS 1load and store instructions for
commands and data transfer

e But...but... there are many different devices!

e Encapsulate device-specific interactions in generic block
interface

350

File system abstraction

Application user

POSIX API [open, read, write, close, efC] = = = = = = = = = -

kernel

Generic Block Interface [block read/write]

\

Generic Block Layer
|
Specific Block Interface [protocol-specific read/write]

The File System Stack

351

| SSUES remaining

e Devices w/ special capabilities
e might not be able to use w/ generic layer

e Bugs!
e device drivers are specific to hardware, written by
companies that build the hardware
e over 70% of linux source is in device drivers
e primary source of bugs and kernel crashes

352

Example Device: IDE interface

Control Register:
Address 0x3F6 = 0x08 (0000 1REO): R=reset,
E=0 means "enable interrupt"

Command Block Registers:
Address 0x1FO0 Data Port

Error

Sector Count

LBA low byte

LBA mid byte

LBA hi byte

1B1D TOP4LBA: B=LBA, D=drive

Address 0x1F1
Address 0x1F2
Address 0x1F3
Address 0x1F4
Address O0x1F5
Address 0x1F6

Address 0x1F7 Command/status
Status Register (Address 0x1F7): LBA= “|Ogica| block address”
7 6 5 4 3 2 1 0
BUSY READY FAULT SEEK DRQ CORR IDDEX ERROR
Error Register (Address 0x1F1l): (check when ERROR==1)
7 6 5 4 3 2 1 0
BBK UNC MC IDNF MCR ABRT TONF AMNF
BBK Bad Block
UNC Uncorrectable data error

MC Media Changed

IDNF = ID mark Not Found

MCR = Media Change Requested
ABRT = Command aborted

TONF = Track 0 Not Found

AMNF = Address Mark Not Found

353

| / O outline

Wait for drive to be ready:
e read Status Register (Ox1F7) until drive is not busy, and READY
Write parameters to command registers:

e Write the sector count, logical block address (LBA) of the sectors to be accessed, and drive
number (master=0x00 or slave=0x10, as IDE permits just two drives) to command registers
(Ox1F2-0x1F6)

Start the 1/0:
e issue read/write to command register (Ox1F7)

Data transfer (for writes):
e wait until drive status has READY and DRQ (drive request for data)
e write data to data port

Handle interrupts:

e In the simplest case, handle an interrupt for each sector transferred; more complex approaches

allow batching and thus one final interrupt when the entire transfer is complete.
Error handling:

e read the status register after each operation. If ERROR bit is on, read the error register for details

Example IDE Driver

determining readiness:

static int ide_wait_ ready() {
while (((int r = inb(0x1£7)) & IDE BSY) || !(r & IDE DRDY))

; // loop until drive isn’t busy

355

Example IDE Driver

e queueing an /O request:

void ide_rw(struct buf xb) {
acquire (&ide_lock) ;
for (struct buf *xpp = &ide_queue; *pp; pp=& (*xpp)->gnext)

; // walk queue
*pp = Db; // add request to end
if (ide_queue == b) // if g is empty

ide_start_request (b); // send req to disk
while ((b->flags & (B_VALID|B_DIRTY)) != B_VALID)

sleep (b, &ide_lock); // wait for completion

release (&ide_lock) ;
}

write parameters to command register, start the 1/O:

static void ide_start_request (struct buf xb) {
ide_wait_ready();

outb (0x3f6, 0); // generate interrupt
outb (0x1f2, 1); // how many sectors?
outb (0x1f3, b->sector & 0xff); // LBA goes here
outb (0x1f4, (b->sector >> 8) & Oxff); // ... and here
outb (0x1£f5, (b->sector >> 16) & 0xff); // ... and here!
outb (0x1f6, 0xel0 | ((b->dev&l)<<4) | ((b->sector>>24)&0x0f));
if (b->flags & B_DIRTY) {

outb (0x1£f7, IDE_CMD_WRITE) ; // this is a WRITE

outsl (0x1£f0, b->data, 512/4); // transfer data too!
} else {

outb (0x1£f7, IDE_CMD_READ); // this is a READ (no data)

356

Example IDE Driver

handling completion interrupt:
void ide_intr() {
struct buf *b;
acquire(&ide_lock);
if (!(b->flags & B_DIRTY) && ide wait_ready(l) >= 0)
insl(0x1f0, b->data, 512/4); // if READ: get data
b->flags |= B_VALID;
b->flags &= ~B_DIRTY;
wakeup(b); // wake waiting process

nue = b->gnext) != 0) // start next request

ide_start request(ide._qgueue); // (if one exists)

release(&ide..lock);

357

Persistence

e 37 - Hard Disk Drives

e 38 -RAID
e 39 - File and Directories

358

Magnetic Hard Drives

e platter has set of concentric tracks

e each track divided into sectors
e sectors read by read-write head

track ¢

sector s

cylinder ¢

platter g

S

N -
| <LZ T 1T~

l«— spindle

7~ p
-y
S

— arm assembly

read-write

head
{

rotation

359

Computing the Cost

e Costis:
+ seek time: move to correct track

+ rotational delay: disk must rotate Rotates this way
until we get to correct sector <

+ tfransfer time: time to read a
sector

e Also, disk has:

e ftrack cache: head always
reading, remembering

e scheduler: more later...

360

