Persistence

e 40 - File System Implementation

o 41 - Locality and the Fast File System
e 42 - Crash Consistency

e 43 - Log-structured File Systems

e 44 - Flash-based SSD

e 45 - Data Integrity and Protection

398

Reading a file from disk

* Issue an open(“/foo/bar”’, O_RDONLY),

* Traverse the pathname
* begin at the root of the file system (/)
* root inode number often 2 (specified in superblock)
* read in block containing inode 2.
* use “/“ pointer blocks to get “/“ directory contents
* recurse on “/foo”
* check permissions, memory for metadata, file descriptor
 when read () issued
* consult inode, find and read in first block
* update open file table, file offset
* When file closed

» dealloc file descriptor, logically the file may be deallocated, but
not usually done here

399

Open and read /foo/bar timeline

data

inode | root foo bar

bitmap bitmap |inode inode inode

root foo bar bar bar
data data data data data
[0]] [2]

open(bar)

read
read

read

read

read

31/0s

read()

read

write

read

read()

read

write

read

read()

read

write

read

400

Create /foo/bar timeline

10 I/0s

51/0s

data inode | root foo bar |root foo bar bar bar
bitmap bitmap |inode inode inode|data data data data data
o0 [I[2]
read
read
read
read
create read
(/foo/bar) write
write
read
write
write
read
read
write() write
write
write
read
read
write() write
write
write
read
read
write() write
write
write

401

Unified Buffer Cache

e puffer cache
o recently used pages/disk-blocks held in memory
e writes buffered (delayed)
e consecutive writes batched
e scheduled more efficiently
e dynamically partitioned (not fixed size)
e some apps (databases) ignore the cache and file system
e call rsync()
e use direct I/O interfaces to disk
e write to raw disks

402

Locality and the Fast File Systemers

o “old” file system

S| Inodes Data

tracks

e performance starts bad, gets worse
» fragmentation as files deleted and created
e Dblock size too small (slow transfers)
e 1inodes not near data
* FFS fixed many of these problems
ebut we are still talking about the 1990s...

403

Cylinder groups s

e ... could be useful but disks do not export enough info

Single track (e.g., dark gray)

of drive across different surfaces
[all tracks with same color]

Cylinder
Tracks at same distance from center

Cylinder Group:

Set of N consecutive cylinders

3, first group does
not include black track]

[if N

404

Block GI’OUDS FFS

e FFS uses block groups
e disk maps onto cylinder groups
e each has superblock, bitmaps, inodes, data

ib db Inodes Data

o “Keep related stuff together” - single group
e most directories
e file data and related inodes

* large files have chunks sprayed across multiple groups

405

How Far are Accesses s

o How “far away” file accesses were

from one another in the directory tree.

s A 100%
proc/sre/foo.c

proc/sre/bar.c

the distance of two file access is 1 80%
proc/src/foo.c
proc/obj/foo.o

the distance of two file access is 2

60%

J

40%

Cumulative Frequency

* 7% of file accesses to the same file
20%
+ Nearly 40% of file accesses in the same

Trace

X Random

directory 0% b=

4 6 8

* 25% of file accesses were distance two Path Difference

10

406

Large File Exceptioness

e Usual file placement policy
e alarge file might fill a group entirely
e |ose directory locality

GO G1 G2 G3 G4 G5 G6 G7 G8

G9

01234
56789

e Fix: spread large chunks across multiple groups
* make chunks large enough to perform well

G: block group

GO G1 G2 G3 G4 G5 G6 G7 G8

G9

90 01 23 45 67

407

Log (Chunk Size Needed)

How Large Should Chunks Be? s

10M

32K

1M

1K

e |f want 50% of peak disk performance

e = half time seeking, half time
transferring data

________ 90%, M o If we assume:
| - disk bandwidth 1GB/sec

= positioning time 5 msec

1GB 1MB
= = need 5 X 1MB = 5MB chunks
sec msec

................

0%

T i T : 1
25% 50% 75% 100%

Percent Bandwidth (Desired)

e 90% peak performance w/ 45 MB
chunks

408

INOJeS rrs

Use inode structure

direct links and blocks same group
indirect blocks, and blocks pointed to, different group
each 1024 blocks (4MB) in different group (4K pages, 4-byte ptr)

S|ib | db Data

12 direct
blocks

2 indirect
blocks {
inode
..
S|ib | db Data

409

Errata

e more internal fragmentation

e used subblocks for space efficiency (small disks in stone ages)
e copy to regular blocks when full
e 11ibc buffers, so most large files never subblock’d

e parameterization
e blocks laid out so that OS has time to request block i + 1
after reading block it, before i + 1 rotates past
e track buffer
e |ong file names
e symbolic links

410

