
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency
● 43 - Log-structured File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

398

Reading a file from disk
• Issue an open(“/foo/bar”, O_RDONLY),
• Traverse the pathname

• begin at the root of the file system (/)
• root inode number often 2 (specified in superblock)
• read in block containing inode 2.
• use “/“ pointer blocks to get “/“ directory contents

• recurse on “/foo”
• check permissions, memory for metadata, file descriptor

• when read() issued
• consult inode, find and read in first block
• update open file table, file offset

• When file closed
• dealloc file descriptor, logically the file may be deallocated, but

not usually done here
399

Open and read /foo/bar timeline

400

t

3
I/O

s

Create /foo/bar timeline

401

t

5
I/O

s
10

 I/
O

s

Unified Buffer Cache
● buffer cache

● recently used pages/disk-blocks held in memory
● writes buffered (delayed)

● consecutive writes batched
● scheduled more efficiently

● dynamically partitioned (not fixed size)
● some apps (databases) ignore the cache and file system

● call rsync()
● use direct I/O interfaces to disk
● write to raw disks

402

Locality and the Fast File System FFS

● “old” file system

● performance starts bad, gets worse
● fragmentation as files deleted and created
● block size too small (slow transfers)
● inodes not near data

● FFS fixed many of these problems
● ….but we are still talking about the 1990s…

403

tracks

Cylinder groups FFS

● …. could be useful but disks do not export enough info

404

Block Groups FFS

● FFS uses block groups
● disk maps onto cylinder groups
● each has superblock, bitmaps, inodes, data

● “Keep related stuff together” - single group
● most directories
● file data and related inodes
● large files have chunks sprayed across multiple groups

405

How Far are Accesses FFS

406

distance two

● Usual file placement policy
● a large file might fill a group entirely
● lose directory locality

● Fix: spread large chunks across multiple groups
● make chunks large enough to perform well

Large File Exception FFS

407

How Large Should Chunks Be? FFS

● If want 50% of peak disk performance
● half time seeking, half time

transferring data
● If we assume:
▪ disk bandwidth 1GB/sec
▪ positioning time 5 msec
●

● 90% peak performance w/ 45 MB
chunks

⇒

1GB
sec

= 1MB
msec

⇒ need 5 × 1MB = 5MB chunks

408

45 MB

 5 MB

● Use inode structure
● direct links and blocks same group
● indirect blocks, and blocks pointed to, different group
● each 1024 blocks (4MB) in different group (4K pages, 4-byte ptr)

iNodes FFS

409

Errata
● more internal fragmentation
● used subblocks for space efficiency (small disks in stone ages)

● copy to regular blocks when full
● libc buffers, so most large files never subblock’d

● parameterization
● blocks laid out so that OS has time to request block

after reading block it, before rotates past
● track buffer
● long file names
● symbolic links

i + 1
i + 1

410

