
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

411

Test #2

412

void increment(int *iptr) {
 int old;
 do {
 old = *iptr;
 } while (TestAndSet(iptr, old + 1) != old);
}

Nope…

Crash Consistency and Journaling
● How to update the disk despite crashes?

● how ensure self-consistent state, despite partial writes?
● remember:
▪ only individual sectors are atomically written
▪ order sectors written ≠ order stable on disk

● Old systems
● fsck - reads through entire disk, ensuring consistency

● inodes point to allocated data
● directories point to allocated, valid inodes

● Newer systems
● journaling (also called write-ahead logging)

413

Example
● Tiny FS, one file (w/ one block) allocated:

● Inode:

414

owner : keleher
permissions : read-write
size : 1
pointer : 4
pointer : null
pointer : null
pointer : null

Example, cont.
● When we append by adding another block of data…

● allocate and fill new data block
● update inode to point to block, change size
● change data bitmap

415

owner : keleher
permissions : read-write
size : 2
pointer : 4
pointer : 5
pointer : null
pointer : null

Note that all of these changes
sit in the buffer cache for some
unspecified time

Crash scenarios
● just the data block is written

● not a problem
● just the updated inode (I[v2]) is written to disk

● block has garbage (bad)
● also, bitmap disagrees w/ inode (maybe bad)

● just the updated bitmap is written to disk
● no pointer to invalid data, but
● space leak (sorta bad)

● inode and bitmap written
● block has garbage (bad)

● inode and data block written
● all good, except bitmap doesn’t know it (sorta bad)

● bitmap and data block written
● bitmap indicates block used, but no idea for what (sorta bad)

416

FFS Write Ordering

● Writes
● file data blocks asynchronous
● metadata (inodes and directory contents) synchronous

● Implications
● file create call expensive:

● sync write file inode
● sync write directory data
● sync write directory inode

● asynchronous writes:
● file data
● bitmaps can be reconstructed by fsck

417

fsck after crashing

● checks superblock, does FS match blocks allocated….
● free blocks: follows inode pointers, ensures all agree w/

bitmaps
● validate inode fields
● validate inode linkcounts (scan entire disk to find hard links)
● look for multiple different inodes pointing to the same block
● look for ptrs outside partition boundaries, etc.
● directory checks : have “.”, “..”, each inode allocated, etc.

Very slow, getting worse.

418

Journaling write transactions to log before final locations

● write-ahead logging in database world
● all operations go also to an ordered log
● write log before final locations on disk (bitmaps, inodes, data)
● log is the ground truth

● ext3
● on-disk structures mainly the same as ext2
● but optionally has a journal…

● Example : our canonical update again
● We wish to update inode (I[v2]), bitmap (B[v2]), and data block

(Db) to disk
● Before writing them to their final disk locations, we are now first

going to write them to the log (a.k.a. journal)
419

● TxB : transaction begin
● contains a transaction identifier (TID)

● Middle blocks contain actual writes
● this is physical logging, meaning actual writes are in log
● logical logging means some high level representation of the

change is used instead (like “+2”)
● TxE: transaction end

● also has TID

420

Journaling transaction structure

Journaling How to write the transactions?

● Could write transactions one at a time
● wait until one on disk before issuing next
● this is slow

● Could write all operations at once
● much faster
● unsafe : disk might schedule in some other order
● what if schedule is:

● (1)TxB, I[v2], B[v2], and TxE and only later (2) write Db
● and crash between (1) and (2)

● Looks okay….
421

● Write transaction in two steps:
● First write all blocks except TxE to journal

● Second, write TxE:

● TxE must be a single sector
● disk guarantees all or nothing for a single sector
● TxE must be sector size or less.

● Crash before TxE means transaction has no effect
● Crash after TxE allows transaction to be during replayed recovery

422

Journaling better approach

Journaling entire sequence

● Journal write
● write all transaction entries except TxE, wait until on-disk

● Journal commit
● write TxE, wait until on-disk

● Checkpoint:
● write all pending metadata and data updates to final locations

in actual bitmaps, inodes, and data blocks

423

Journaling batching

● If we create two files in the same directory
● modify inode bitmap twice
● modify data bitmap twice
● modify directory data twice
● possibly modify directory inode twice
● two transactions, each with

● Xtion write
● Xtion commit
● checkpoint

● We can instead batch using a single global Xtion
● just mark all data structures that need to be updated
● after some timeout, create a Xtion w/ all modified data

424

“Xtion” == “transaction”

