
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

426

Journaling entire sequence

● Journal write
● write all transaction entries except TxE, wait until on-disk

● Journal commit
● write TxE, wait until on-disk

● Checkpoint:
● write all pending metadata and data updates to final locations

in actual bitmaps, inodes, and data blocks

427

Journaling recovery

● If crash before transaction is written to log
● pending update dropped

● During recovery
● scan disks for all committed transactions
● replay in order

● Issues:
● Works, but recovery is slow…. (like fsck)
● log eventually fills up, FS stops

428

Journaling recovery

● Create a journal superblock
● mark first and last uncheckpointed Xtions

● So complete protocol is:
● journal write
● journal commit
● checkpoint
● free the journal space

● periodically push free Xtions to journal superblock

429

Journaling metadata

● Still a problem : we are writing every block to disk twice
● commit to journal
● checkpoint to on-disk location
● we’ve halved our disk bandwidth!

● (data blocks are majority of journal)

● Metadata journaling
● data blocks not written to journal
● journal would look like:

● Instead: block Db written to final location
430

● When should we write the data blocks to disk?
● if write data to disk after transaction:

● file system consistent, but I[v2] might point to garbage
● Write data to final locations first

“write the pointed-to object before the pointer”

● Protocol now:
● data write
● journal metadata write
● wait for completion of first two steps
● journal commit
● checkpoint metadata
● free at some later time

431

Journaling metadata

● Some metadata really should not be replayed:

1. Directory “foo” is updated by adding a file

2. Directory “foo” is entirely deleted, block 1000 freed

3. User creates file “foobar” using block 1000 for data…

432

Journaling tricksy: block reuse

“What’s the hideous part of the entire system? ... It’s deleting files.
Everything to do with delete is hairy. Everything to do with delete...
you have nightmares around what happens if blocks get deleted and
then reallocated.” [Tweedie00]

● Assume crash occurs and all this is in the log:

● During replay, recover process replays everything in the log
● including the write of directory data to block 1000
● thereby overwriting the user data from file foobar
● but the foobar data is not journaled, so it is now lost…

● ext3 uses revoke records when a directory is deleted
● Recovery first scans for revoke records
● Revoked data not written during recovery

433

Journaling tricksy: block reuse

Data Journaling Timeline wrapping up…

434

t

Metadata Journaling Timeline wrapping up…

435

t

Other Approaches
● Soft updates

● “pointed-to data must always be written before pointer”
● for all FS data
● difficult, depends on low-level details, hard to get right

● Copy-on-write (COW)
● never overwrite in place
● always allocate new blocks for data, inodes, etc.
● change pointer to entire tree of data w/ one swap.

● Backpointer consistency
● add “backpointer” from data to pointer that references it

● data block has a backpointer to inode
● when referencing the data through the inode, check that the

data block has a correct backpointer
● win is that no ordering need be enforced between writes

436

Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured (and other) File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

437

Log-Structure File System (LFS)
● Motivation

 Reads already fast because large buffer caches
● but writes are slow, need to be ordered, and synchronous

● common operations, such as creating a small file, require many
random writes

● Idea:
● many synchronous small writes single large log write
● writes ordered s.t. any pointed-to data is in log prior to ptr
● periodically flush large chunks of log to disk

⟹

438files j, k in-memory log

Modifying a file
● Let’s say we overwrite the first block of file j

● write the new block at end of log
● write the altered inode at end of log
● update the imap and append new copy at end of log

439

D[j,0] D[j,1] D[j,2] D[j,3] D[j,0 v2]

A0

blk[0]:A0
blk[0]:A1
blk[0]:A2
blk[0]:A3

A1 A2 A3 inode[j] A5 inode[j] v2

blk[0]:A5
blk[0]:A1
blk[0]:A2
blk[0]:A3

LFS Issues inode location

● Most recent version of inodes scattered throughout the disk!
● have an inode map (or imap) that maps inumbers to most

recent version of an inode
● inode map cached in memory
● periodically written to disk (e.g. every 30 seconds)
● new chunks are written into log along w/ everything else:

440

checkpoint
region

Reading a file recap

● read the checkpoint region to find imap:
● imap inumbers to most recent version of an inode
● inode points to data

441

D I[k] imap

A0 A1

blk[0]:A0 map[k]:A1

LFS
● Periodically write log to disk

● dependencies between writes are respected by order in log
● therefore any prefix of the log is self-consistent

● At recovery from a crash:
● the on-disk log will have no holes, i.e. it’s a prefix and will be

self-consistent
● any incomplete transactions (file create, etc.) are marked as

garbage
● most recent inode map is read and disk is ready to be used

● In particular:
● no re-executions
● no rollbacks (other than marking a few Xtions as garbage)

442

LFS how large should written chunks be?

● Each write incurs a fixed positioning overhead , so the time
to write out D MB is:

 	 (is peak rate)

● Effective rate is therefore:

	 (F is percent of)

of peak rate)
● Solving for D:

●

● With F=0.9, peak transfer of 1 GB, positioning time of 10 msec:
●

Tpos

Twrite = Tposition + D
Rpeak

Rpeak

Reff = D
Tpos + D

Rpeak

= F × Rpeak Rpeak

D = F
1 − F

× Rpeak × Tpos

F = 9 × 1000MB/sec × 0.01sec = 90MB
443

