
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

444

● no overwrite means
● files, dirs, etc. become fragmented
● parts of the log no long active:

● all but most-recent versions of inodes
● data that has been modified
● out-of-date imap chunks

● cleaner process asynchronously copies live data
● from full segments to clean new segments
● cleaned segments are empty, can be used again
● might use this opportunity to segregate by age, activity, etc.

● segment full of rarely-changing data rarely needs cleaning

445

LFS Issues need for a cleaner

LFS cleaning costs

● Cleaner
● read some number of live segments
● copy live data out into fewer new segments
● old segments are now free.

● But….write amplification! Let:
● N : num segments to be cleaned
● u : percent of these segments that is live
● write cost (wc): write amplification of each new byte

● if utilization low, say 10%: 	 wc = 2.22
● if utilization high, say 90%: 	 wc = 20.00

446

write cost = (#readSegs + #writeLive + #writeNew) / (#writeNew)
 = (N + N*u + (N*(1-u)) / (N * (1-u))
 = 2/(1-u)

LFS cleaner notes

● advantages
● asynchronous
● can be done in bulk, i.e. fast

● opportunities
● older data less likely to be modified than new data

● can segregate data based on age for cleaner writes

● implemented on bare disk
● log chunk to be written to disk is many pages long
● LFS can report consistency check of all blocks back to OS
● LFS guarantees that pg i written correctly before pg i+1

447

Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured (and other) File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

448

SSDs
● non-volatile storage

● we will assume NAND flash, though rapidly evolving
● terminology

● a flash chip implements one or more banks (or planes)
● a bank contains some number of (erase) blocks

● might be 128 KB or 256 KB
● a block contains some number of pages

● maybe 4 KB

449

SSDs operations

● reads
● any page can be read, same cost
● very fast, low microseconds

● erase
● before writing, a page’s entire block must be erased
● slow, milliseconds
● needs to be done in advance, usually asynchronously

● program (write)
● entire page written
● slower, 100’s of usec

● tech constantly evolving, but generally costs follow:
● read << write << erase

450

SSDs
● Pages can be in one of several states:

451

● Unrealistically small for example. All start as valid:

● If we want to write page 0, must first erase:

● Now we can program page 0:

● But, but…pages 1-3 are gone….

SSDs example

452

SSDs deets

● Reliability
● no head crashes
● erasure causes blocks to wear out
● NANDs leak

● not good for archival storage

453

SSDs from flash

● SSD contain
● some amount of RAM for mapping tables
● FLASH
● control logic

● flash translation layer (FTL)
● maps logical blocks to physical pages
● handles erasures asynchronously
● modifies mappings as needed

● because of erasures (we don’t write in place)
● failures

● wear leveling

● log-structured…
454

Why not direct mapped?
● Problems if FTL mapping LBA N to physical page N

● performance
● write to N requires:
▪ read block
▪ erase block
▪ write block

● reliability
● hot spots in program cause some blocks to fail
● no wear leveling

455

SSDs ftl

● log structure
● in storage device
● also in file system above
● keeps mapping table

● Assume:
● externally a disk w/ 512-byte sectors
● client is reading/writing 4k blocks
● SSD has many 16-KB blocks, w/ 4-KB pages

456

SSDs example

457

Write a1 to FS block 100, a2 101, b1 2000, b2 2001→ → →

Rewrite c1 100, c1 101→ →

Garbage collect

logical block (FS) to physical page mapping table

SSDs mapping table size

● assume 1TB drive:
● if assume 4 bytes / 4k block, 1GB for table, in memory!

● block approach:
● reduces size by factor , but more complicated

● assume page-level mappings , , , :
● all have chunk 500
● offsets 0, 1, 2, 3

● LBA translation:
● get chunk from top-level bits
● add offset to chunk —> page mapping

● reads easy, but writes require prior reads and erases

sizeblock

sizepage

2000 → 4 2001 → 5 2002 → 6 2003 → 7

458

● direct writes to a few empty blocks (log blocks):
● log table : per-page mappings (checked first)
● data table : per-block mapping (checked next)

459

SSDs hybrid mapping

But what if re-write 1000, 1001?

Say: a 1000, b 1001, c 1002, d 1003→ → → →

switch merge

