Persistence

43 - Log-structured File Systems
44 - Flash-based SSD
45 - Data Integrity and Protection

444

LFS |SSU68 need for a cleaner

* NO Overwrite means
o files, dirs, etc. become fragmented
e parts of the log no long active:
e all but most-recent versions of inodes
e data that has been modified
e out-of-date imap chunks
e cCleaner process asynchronously copies live data
o from full segments to clean new segments
e cleaned segments are empty, can be used again
e might use this opportunity to segregate by age, activity, etc.
e segment full of rarely-changing data rarely needs cleaning

445

LFS cleaning costs

e Cleaner
e read some number of live segments
e copy live data out into fewer new segments
e 0old segments are now free.
e But....write amplification! Let:
e N : num segments to be cleaned
e U : percent of these segments that is live
e write cost (wc): write amplification of each new byte

write cost (#readSegs + #writeLive + #writeNew) / (#writeNew)

= (N + N*u + (N*(1-u)) / (N * (1-u))
= 2/(1-u)
e if utilization low, say 10%: wc = 2.22
 if utilization high, say 90%: wc = 20.00

446

|_ FS cleaner notes

e advantages
e asynchronous
e can be done in bulk, i.e. fast

e QOpportunities
» older data less likely to be modified than new data
e can segregate data based on age for cleaner writes

e implemented on bare disk
* |og chunk to be written to disk is many pages long
o LFS can report consistency check of all blocks back to OS
o |FS guarantees that pg / written correctly before pg i+7

447

Persistence

44 - Flash-based SSD
45 - Data Integrity and Protection

448

SSDs

e non-volatile storage
e we will assume NAND flash, though rapidly evolving
e terminology
e aflash chip implements one or more banks (or planes)
e abank contains some number of (erase) blocks
e might be 128 KB or 256 KB
e ablock contains some number of pages
* maybe 4 KB

Block: 0 1 2
Page: 00 01 02 03(04 05 06 07(08 09 10 11
Content: | | | | | 1] L 1]

449

S S D S operations

e reads

e any page can be read, same cost

e very fast, low microseconds
e crase

» pefore writing, a page’s entire block must be erased

e slow, milliseconds

e needs to be done in advance, usually asynchronously
e program (write)

e entire page written

e slower, 100’s of usec

e tech constantly evolving, but generally costs follow:

e read << write << erase
450

SSDs

e Pages can be in one of several states:

iiii Initial: pages in block are invalid (1)

Erase() — EEEE State of pages in block set to erased (E)
Program(0) — VEEE Program page 0; state set to valid (V)
Program(0) — error Cannot re-program page after programming
Program(l) — VVEE Program page 1

Erase() — EEEE Contents erased; all pages programmable

451

S S D S example

e Unrealistically small for example. All start as valid:

Page 0 Page 1 Page 2 Page 3
| 00011000 | 11001110 | 00000001 | 00111111 |
VALID VALID VALID VALID

e |f we want to write page 0, must first erase:

Page 0 Page 1 Page 2 Page 3
L1111 | 11 | 111 | 1111111 |
ERASED ERASED ERASED ERASED

e Now we can program page O:
Page 0 Page 1 Page 2 Page 3
| 00000011 | 11111111 | 11111111 [11111111 |
VALID ERASED ERASED ERASED

e But, but...pages 1-3 are gone....
452

SS D S deets

Read Program Erase

Device (us) (us) (us)
SLC 25 200-300 1500-2000
MLC 50 600-900 3000
TLC “75 7900-1350 4500

e Reliability
e no head crashes
e erasure causes blocks to wear out
e NANDs leak
e not good for archival storage

453

S S D S from flash

e SSD contain
e some amount of RAM for mapping tables
e FLASH
e control logic
o flash translation layer (FTL)
e maps logical blocks to physical pages
e handles erasures asynchronously
e modifies mappings as needed
e because of erasures (we don’t write in place)
e failures
e wear leveling

e Jog-structured...
454

Why not direct mapped?

Problems if FTL mapping LBA N to physical page N
e performance
e write to N requires:
read block
erase block
write block
e reliability
e hot spots in program cause some blocks to falil
e no wear leveling

455

SSDS #

e |og structure

in storage device
also in file system above
keeps mapping table

e Assume:
externally a disk w/ 512-byte sectors
client is reading/writing 4k blocks
SSD has many 16-KB blocks, w/ 4-KB pages

456

S S D S example

Rewrite ¢l — 100, cl — 101

Table: 100 =4 101 =5 20002 2001—+3
Write al to FS block 100, a2 — 101, bl — 2000, b2 — 2001
Block: 0 1 2
Block: 0 1 2 Page: 00 01 02 03|04 05 06 07|08 09 10 11
Page: 00 01 02 03|04 05 06 07/08 09 10 11 Content: [a1]a2[b1][b2|c1[c2] | [T 1
Content: [[[] [T [T 1 State: V V V V|V V E E|i i i i
State: i i i i i@ i i ii i i i
Block: 0 1 2 Garbage collect
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Table: 100 -4 101 -5 2000—6 20017
Content: [[[| L[] [[] _
State: E E E E|[i i i i}|i i i ‘i Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Jontent: | cl Icz |b1 |b2
Table: 100 =0 State: E E E E|V V V V|i i i i
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [al] [] [1 [[]
State: V E E E|i i i i[i i i i
Table: 100 =0 101 =1 20002 2001—+>3
Block: 0 1 2 logical block (FS) to physical page mapping table
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [a1]a2]bi[b2] [[| [T 1
State: V V.V V|i i i il|i i i i

457

S S D S mapping table size

e assume 1TB drive:

o ifassume 4 bytes / 4k block, 1GB for table, in memory!
e block approach:

o reduces size by factor M but more complicated

Sizépage
e assume page-level mappings 2000 — 4, 2001 — 5, 2002 — 6, 2003 — 7:
e all have chunk 500
e oOffsets 0,1, 2,3
e LBA translation:
e get chunk from top-level bits
¢ add offset to chunk —> page mapping

Table: 500 =4 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: | | | | Jalb]ec|d] | [| Chip

State: i i i i |V V V V|i i i i

e reads easy, but writes require prior reads and erases
458

S S D S hybrid mapping

o direct writes to a few empty blocks (log blocks):
e |og table : per-page mappings (checked first)
e data table : per-block mapping (checked next)

Say: a — 1000, b — 1001, c — 1002, d — 1003

Log Table:
Data Table: 250 =8 But what if re-write 1000, 1001?
Block: 0 1 2 Log Table: 10000 10011
Page: 00 01 02 03|04 05 06 07|08 09 10 11 Data Table: 250 —»8
Content: [[[] [T 1 alb[c|d
State: i i i i|i i i i|V V V V Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11
Content: [a' [b'[| [T T JalolcTd
Log Table: ~ 1000--0 1001—>1 1002—>2 1003—3 State: V. V. i i]i i i i|V V VYV
Data Table: 250 =8
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07[08 09 10 11
Content: [[b[c[d| [[[[alb]c]d
State: V V V VI|i i i i|V V V V
Log Table:
Data Table: 250 -0
Block: 0 1 2
Page: 00 01 02 03|04 05 06 07|08 09 10 11 H
Content: [a [0 [c[d| [[| [T 1 SW/tCh mel’ge
State: V.V V V[i i i i[i i i i 459

