
Persistence
● 36 - I/O Devices
● 37 - Hard Disk Drives
● 38 - RAID
● 39 - File and Directories
● 40 - File System Implementation
● 41 - Locality and the Fast File System
● 42 - Crash Consistency and Journaling
● 43 - Log-structured (and other) File Systems
● 44 - Flash-based SSD
● 45 - Data Integrity and Protection

460

● This is a partial merge:
● could clean up by copying c, d to end of log (block 0)
● i.e. the rest of a single block

● Might need to copy from many blocks i.e, a full merge:
● assume blocks 0, 4, 8, 12 written
● would need to write 0,1,2,3 and 4,5,6,7 and….
● expensive

● Another approach is to only cache part of mapping in memory
● the rest are stored on flash

461

SSDs hybrid mapping

c d

“log” is blocks 2, 0

● Other issues
● FTL can be expensive
● wear leveling:

● erase/program cycles quickly wear out blocks
● FTL tries to distribute evenly
● long-lived data does not get write share:
▪ periodically read live data and write elsewhere (??)

● cost

● But:

462

SSDs conclusion

Data Integrity how to ensure our data is safe?

● RAID
● good, but assumes fail-stop failures
● also need to worry about:

● latent-sector errors (LSEs)
● block corruption

● over 3 years, 1.5 million drives

463

Latent sector errors:
● causes:

● head crashes
● cosmic rays

● hardware for the win….
● in-disk error-correcting codes (ECC)
● ECC fails lead to disk returning an error while reading
● depending on the failure, and the type of ECC, disk might

even be able to correct bit errors
● recover using RAID

● but what if full-disk failure while attempting to recover a
sector?

● use two parity blocks…

464

Data Integrity latent sector errors

● disk might become corrupt in way not detectable by disk itself:
● disk might have incorrect block
● block corrupted on way to (or from) disk

● causes
● buggy firmware might write block to wrong location
● buggy hardware

● detection
● file systems use checksums w/ various speeds and strengths:

● XOR of all words
● addition of all words
● cyclic redundancy check (CRC)

● but where to store checksums?

465

Data Integrity block corruption

● Where to store checksums?
● manufacturer can format drive w/ 520-byte sectors

● consolidate checksums on another sector

● How do we use them?
● compare checksums when reading, hope for a backup

● What if block stored to sector y instead of x?
● checksum would be valid
● include x in the checksum

bx

466

Data Integrity misdirected blocks

Distributed Systems

● 48 - Communication Basics
● 49 - NFS
● 50 - AFS
● GFS

468

Distributed Systems

Communication Basics
● Building distributed systems

● all components fail
● communication fails
● how to build systems that rarely fail from components that do?

● Issues:
● communication

● what are the right primitives?
● what are the right types of applications?

● performance
● especially with interconnects much slower than buses

● security
● systems span users, domains
● the Internet is scary

469

Communication
“progress and correctness of distributed consensus algorithms is
impossible to prove in asynchronous environments” - FLP theorem

● communication is fundamentally unreliable
● packet loss
● packet corruption
● packet delays

● maybe don’t rely on reliability
● maybe add encryption to the link!
● but….

470

Two Generals brief segue…

“progress and correctness of distributed consensus algorithms is
impossible to prove in asynchronous environments” - FLP theorem

471

Impossibility of consensus w/ 3

472

Impossibility of consensus w/ 3

473

Can L1 tell who is faulty? Can L1 tell who is faulty?

more about consensus later, if we have time….

- all local lieutenants do the same thing
- any local lieutenant does what the general says

End-to-End Argument crypto is always good, right?

474

● end-to-end argument says:
● application layers at each end of comm are the only appropriate

places where some functionality should be implemented
● examples:

● provided encryption might not be good enough

▪
▪ 3DES is ancient, maybe want to use AES, blowfish

● provided encryption might be too expensive
▪ might not need encryption at all, just adds overhead

● app semantics might be needed
▪ different app messages might have different needs

● but strong semantics in underlying layers do help

A B3DES encryption

