
● 48 - Communication Basics
● 49 - NFS
● 50 - AFS
● GFS

475

Distributed Systems

Impossibility of consensus w/ 3

476

Can L1 tell who is faulty? Can L1 tell who is faulty?

- all local lieutenants do the same thing
- any local lieutenant does what the general says

Distributed consensus is the process by which a group of networked computers agree on a single data
value or course of action, even in the presence of failures or unreliable communication.

Distributed Systems reliable communication layers

● Need to be able to detect and recover from packet loss:
● acknowledge (“ack”) receipt of a message

477

Distributed Systems reliable communication layers

● Need to be able to detect and recover from packet loss:
● acknowledge (“ack”) receipt of a message

● What if we don’t get the ack? How do we even know we
don’t get the ack?

478

Distributed Systems reliable communication layers

● Need to be able to detect and recover from packet loss:
● acknowledge (“ack”) receipt of a message

● What if we don’t get the ack? How do we even know we
don’t get the ack?

479

● Need to be able to detect and recover from packet loss:
● acknowledge (“ack”) receipt of a messaage

● What if we don’t get the ack? How do we even know we
don’t get the ack?

Distributed Systems reliable communication layers

480

Is this ok?
…no.

● 48.4 and 48.5 appear the same to the server…
● but the msg was received in 48.4, and not in 48.5
● this is bad, as server’s default is to repeat the message, not

good if messages are not idempotent
● fix is to include sequence numbers in messages

● receiver could track every number ever seen, but expensive.
● monotonically increasing sequence numbers better

● receiver tracks highest received sequence number
● acks, but does not execute duplicate messages
● dealing with out-of-order messages (42, 44, 43, 45…)

app-dependent

481

Distributed Systems reliable communication layers

Distributed Systems TCP

482

ACK not received

● TCP builds on seq numbers:
● selective acknowledgments, sliding windows,

PAWS (seq wraparound protection), congestion
control…

● client returns exact same ack after syn-ack transmission
● process continues for a bit and then server gives up

● turn remote requests into procedure calls to local functions
● need interface definition:

● client stub generator uses interface def to:
● create a msg buffer
● pack (marshal) request into buffer
● send to destination
● synchronously wait for reply
● unpack (unmarshal) return values
● return return values to caller

Remote Procedure Calls

483

● server stub generator uses interface def to:
● unpack (unmarshal) the message
● call local func w/ arguments
● pack the return values into a reply buffer
● send the reply

● What about pointers, or other complex data data types?
● architecture- and language-independent encodings

● JSON
● protocol buffers
● etc.

● What about concurrency in server?
● want the server to be multi-threaded
● need to ensure no data races between server stubs and the functions

they call

● RPC generally doesn’t need reliable communication (TCP)
● “ack” is not needed, as RPC (“the app”) generally returns a response

● gRPC/protobufs is your friend if you are working with micro-services

Remote Procedure Calls

484

● 48 - Communication Basics
● 49 - NFS
● 50 - AFS
● GFS

485

Distributed Systems

NFS Sun Microsystems

● first widely used distributed file system
● clients diskless

● easy sharing (consistency easy)
● centralized admin
● security

486

NFS
● distributed file system should be transparent

● except possibly in performance
● client issues same file-system calls as standalone system

487

VFS

Ext2 Ext3 NFS Client

client

networking layer

NFS Server
networking layer

nfs server

● NFS goals:
● simple and fast file recovery
● stateless protocol : server keeps no client state

● server scales well
● client crashes transparent
● server crashes transparent
● client must maintain all state the the server needs for any

communication

488

NFS actually NFSv2

“a distributed system is one where a machine I've never heard of goes
down and I can't read my email”
 - Leslie Lamport: Turing Award Winner for his work on distributed systems

● file handle : uniquely describe file or directory
● volume ID
● inode number
● generation number (inumbers get re-used)

489

NFS actually NFSv2

490

NFS reading a file : client-side and file server actions

● server crashes / restarts, knowing nothing about clients:
● most client requests are idempotent

● lookups, reads don’t change server state
● writes contain data and exact offset to write to

● client handles all timeouts in the same way

491

NFS server failures

NFS performance

● client-side caching
● read file data (and metadata) cached by client
● all good unless the file changes on the server

● client-side write buffers
● coalescing
● aggregating disparate messages
● writes sent back to server asynchronously (but before close())

● However : cache consistency!

492

Problems:
● update visibility

● writes foo.c, but does not immediately push to server
● reads, sees old version
● flushes to server

● stale cache
● closes and reads again, sees old version (foo.c locally cached)

Fixes:
● close-to-open consistency

● every open guaranteed to see every prior write to the server
● must validate cache before use (GETATTR)
● but maybe not all the time

NFS consistency is weak… (like most other FS’s)

C1
C2
C1

C2

493

NFS cache consistency

● tons of memory
● wants to use it for disk cache 	 (satisfy reads)
● wants to use it for write buffer 	 (quickly ack writes)

● what could go wrong?
● server could ack a write before writing to disk!

● say file initially has three 4k blocks of data:

● client overwrites with:
 write(aaa…, 0)., write(bbb…, 4k), write(ccc…, 8k):

● server crashes after acking second block, before writing:

● client never evens knows that the server crashed
494

NFS server caching

Problem: poor performance for client the same file again
● fix: allow client to cache data and attributes on client

● but when client re-opens not guaranteed most recent version
● fix: have clients re-validate on open

● but slow
● fix: time out the cached attributes

● means data can all be cached, attributes sometimes validated
w/ server before accesses

● but when client re-opens not guaranteed most recent version
(still)

non-fix: NFS consistency is weak… (like most other FS’s)

i

i

i

i

495

NFS cache consistency

496

NFS innovations

● stateless protocol
● minimizes state server needs to track
● server can crash and recover w/o clients being aware

● itempotent requests
● necessary for statelessness
● client treats network message drops, server failure the same
● client does not need to know which is which

● client and server buffering
● essential for performance
● cache consistency issues

● server flushes writes before acking
● client attribute cache times out

● VFS interface
● makes application API independent of underlying FS

