
● 48 - Communication Basics
● 49 - NFS

● 50 - AFS

● GFS

● Review

498

Distributed Systems

Andrew File System AFS v1

● primary motivation was scale
● how many clients could a single server accommodate?

● user-visible behavior well-defined

● whole-file caching (not block)

● all reads and writes are to copy on local disk

499

Andrew File System AFS v2

● Problems w/ v1:
● full path traversal costs (on the server!)

● “/home/keleher/412/exams/s25/exam3s25.tex”

● client issues too many TestAuth msgs (sound familiar?)

● load not balanced across servers (fix by reapportioning files
across volumes on different servers)

● server has a process per client (fix using threads)

● Improving the protocol:
● client callbacks:

● promise from the server to notify client if cached file changed

● file identifier (FID) (like NFS’s file handle)

● volume id

● file id

● “uniquifier” (usually called epochs elsewhere) 500

AFS
example

501

Andrew File System cache consistency

Mentioned two issues w/ NFS:

● update visibility
● when will server be updated w/ client write?

● cache staleness:
● when will clients be informed their versions are out of date?

● AFS procedure:
● client writes, possibly many times

● closes

● writes complete file back to server, becomes visible

● server breaks callback

▪ contact each server w/ a callback and invalidate its copy

all apps on single machine see same copy 502

Andrew File System cache consistency

503

Andrew File System cache consistency

504

● AFS provides also close-to-open consistency
● whole-file caching and updating

● never see concurrent writes diff clients in same version of a
file

● “last writer wins” (really last closer wins)

● Crash recovery complicated
● crashing client might miss callback (client treats cache as

suspect after crash)

● crashing server loses callbacks table

● server might inform all clients after recovery

● or clients constantly check for server liveness w/ heartbeats

● there is a cost to building a more sensible and scalable
caching model

NFS vs AFS
● primarily differ in caching

● What to cache?

● NFS caches blocks

● AFS entire files (on disk)

● When to push writes to server?

● Loosely defined for NFS:

▪ any time from right away, to when file is closed

▪ (only modified blocks)

● If any part modified, AFS pushes entire file at close()

● Final contents after concurrent merges by different clients:

● NFS: writes by the different clients might be intermingled

● AFS: final version reflects the last write; other write is lost

505

AFS vs NFS

506

• A, B, C, Z:
• A, D, C, Z:
• A, D, Z, Z:
• Z, D, Z, Z:

NFS only
NFS only
neither
AFS only

Google File System v1

● Needs
● need to handle massive files

● most mutations are appends

● co-design w/ applications (also an advantage)

● Assumptions
● built from hundreds, or thousands, of cheap machines

● failures are the common case

● Features
● relaxed consistency (also an advantage)

● atomic record append (without locking)

● no data caches

● append-only model means re-use not common

● host operating system does limited caching anyway

507

● multiple chunk servers
● hold fixed size chunks

● immutable once written

● identified by a globally unique 64-bit ID

● coordinator (GFS master)
● single machine holds all metadata in memory

● persistent

▪ file and chunk namespaces (think directories)

▪ mappings from files to chunks

▪ persistent by flushing operations log locally, remotely before visible

● soft state

▪ locations of chunk replicas

▪ on startup or recovery restore by asking chunkservers

● total state is 64 bytes for each 64MB chunk

● background garbage collection, replica reassignment and balancing

508

GFS two types of nodes

