Distributed Systems

e 48 - Communication Basics
e 49 -NFS

e 50 - AFS

e GFS

e Review

498

Andrew File System arss

e primary motivation was scale
e how many clients could a single server accommodate?
e user-visible behavior well-defined
e whole-file caching (not block)
e all reads and writes are to copy on local disk

TestAuth Test whether a file has changed
(used to validate cached entries)
GetFileStat Get the stat info for a file

Fetch Fetch the contents of file

Store Store this file on the server
SetFileStat Set the stat info for a file
ListDir List the contents of a directory

Figure 50.1: AFSv1 Protocol Highlights

499

Andrew File System ars .z

e Problems w/ v1:;
o full path traversal costs (on the serverl)
e “/nome/keleher/412/exams/s25/exam3s25.tex”
e client issues too many TestAuth msgs (sound familiar?)

* |oad not balanced across servers (fix by reapportioning files
across volumes on different servers)

e server has a process per client (fix using threads)
e |mproving the protocol:
e Client callbacks:
e promise from the server to notify client if cached file changed
o file identifier (FID) (like NFS’s file handle)

e volume id
o fileid
e “uniquifier” (usually called epochs elsewhere) 500

Client (C,) Server
fd = open(“/home/remzi/notes.txt”, ...);

Send Fetch (home FID, “remzi”)
Receive Fetch request

look for remzi in home dir
establish callback(C;) on remzi
exam ,O/ e return remzi’s content and FID
Receive Fetch reply
write remzi to local disk cache
record callback status of remzi
Send Fetch (remzi FID, “notes.txt”)

Receive Fetch request
look for notes.txt in remzi dir
establish callback(C;) on notes.txt
return notes.txt’s content and FID
Receive Fetch reply

write notes.txt to local disk cache

record callback status of notes.txt

local open () of cached notes.txt

return file descriptor to application

read(fd, buffer, MAX);
perform local read () on cached copy

close(fd);
dolocal close () on cached copy
if file has changed, flush to server

fd = open(“/home/remzi/notes.txt”, ...);
Foreach dir (home, remzi)
if (callback(dir) == VALID)
use local copy for lookup(dir)
else
Fetch (as above)
if (callback(notes.txt) == VALID)
open local cached copy
return file descriptor to it
else
Fetch (as above) then open and return fd

Aﬂdl’eW F||e SyStem cache consistency

Mentioned two issues w/ NFS:
e update visibility
e when will server be updated w/ client write?
e cache staleness:
e when will clients be informed their versions are out of date?

o AFS procedure:
e client writes, possibly many times
e closes
* writes complete file back to server, becomes visible
* server breaks callback

= contact each server w/ a callback and invalidate its copy

all apps on single machine see same copy

502

Aﬂdl’eW F||e SyStem cache consistency

Client; Client2 Server Comments
P; P2 Cache| P3 Cache| Disk
open(F) - - - File created
write(A) A - -
close() A - A
open(F) A - A
read) > A A - A
close() A - A
open(F) A - A
write(B) B - A
open(F) B - A Local processes
read() B B - A see writes immediately
close() B - A
B open(F) A A Remote processes
B read) > A A A do not see writes...
B close() A A
close() B y. ¢ B ... until close()
B open(F) B B has taken place
B read() =B B B
B close() B B
B open(F) B B
open(F) B B B
write(D) D B B
D write(C) C B
D close() C C
close() D ¢ D
D open(F) D D Unfortunately for P3
D read) - D D D the last writer wins
D close() D D

503

Aﬂdl’eW F||e SyStem cache consistency

e AFS provides also close-to-open consistency
» whole-file caching and updating
e never see concurrent writes diff clients in same version of a
file
e “last writer wins” (really last closer wins)
e Crash recovery complicated

e crashing client might miss callback (client treats cache as
suspect after crash)

e crashing server loses callbacks table
e server might inform all clients after recovery
e or clients constantly check for server liveness w/ heartbeats

e there is a cost to building a more sensible and scalable
caching model

504

NFS vs AFS

e primarily differ in caching

e \What to cache?
e NFS caches blocks
e AFS entire files (on disk)

* When to push writes to server?
e Loosely defined for NFS:

= any time from right away, to when file is closed
(only modified blocks)

e [f any part modified, AFS pushes entire file at close ()

e Final contents after concurrent merges by different clients:
o NFS: writes by the different clients might be intermingled
e AFS: final version reflects the last write; other write is lost

505

AFS vs NFS

(12 pts) AFS and NFS

Assume:
* We have five unique blocks of data: “A”, “B”, “C”, “D”, and “Z”, each 4k in length.
* “write(F, C, 8k)” means “write the entire block C starting at offset 8k of file
* File “F” is initialized to “Z,Z,Z,Z”, i.e. it’s a 16k file w/ four copies of Z.

C1 | C2 |
open(F)
write(F, A, 0)
open(F)

write(F, B, 4k)

write(F, D, 4k)

write(F, C, 8k)
close(F)

close(F)

Which of NFS and AFS could result in the following final contents of “F”?

* A ,B,C,Z: NFSonly
« A/ D,C,Z: NFSonly
* A D, Z Z: neither

«7,D,Z,Z: AFSonly 506

Google File System

e Needs
e need to handle massive files
e most mutations are appends
e co-design w/ applications (also an advantage)
e Assumptions
e built from hundreds, or thousands, of cheap machines
e failures are the common case
e Features
e relaxed consistency (also an advantage)
e atomic record append (without locking)
e no data caches
e append-only model means re-use not common
e host operating system does limited caching anyway

507

G FS two types of nodes

e multiple chunk servers
e hold fixed size chunks
e immutable once written
e identified by a globally unique 64-bit ID
e coordinator (GFS master)
e single machine holds all metadata in memory

persistent

= file and chunk namespaces (think directories)

= mappings from files to chunks

= persistent by flushing operations log locally, remotely before visible
soft state

= locations of chunk replicas

= on startup or recovery restore by asking chunkservers

total state is 64 bytes for each 64MB chunk

background garbage collection, replica reassignment and balancing

508

