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Google File System

e Needs
e need to handle massive files
e most mutations are appends
e co-design w/ applications (also an advantage)
e Assumptions
e built from hundreds, or thousands, of cheap machines
e failures are the common case
e Features
e relaxed consistency (also an advantage)
e atomic record append (without locking)
e no data caches
e append-only model means re-use not common
e host operating system does limited caching anyway
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G FS two types of nodes

e multiple chunk servers
e hold fixed size chunks
e immutable once written
e identified by a globally unique 64-bit ID
e coordinator (GFS master)
e single machine holds all metadata in memory

persistent

= file and chunk namespaces (think directories)

=  mappings from files to chunks

= persistent by flushing operations log locally, remotely before visible
soft state

= locations of chunk replicas

= on startup or recovery restore by asking chunkservers

total state is 64 bytes for each 64MB chunk

background garbage collection, replica reassignment and balancing
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G FS architecture, and read
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G FS pipelined writes
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G FS reliability

e startup and recovery treated identically:
e master polls all chunkservers for chunks they cache
* read namespace info from locally persistent state

e oOther
e master has shadows that are “almost” up to date

e chunkservers can flush to disk asynchronously because of
replication
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G FS consistency model

e update consistency
e file namespace mutations are atomic (handled by master)
o state of a file region after append can be:
e consistentif clients all guaranteed to see same data
e (defined if consistent and last mutation correct not interleaved
e concurrent updates may leave system undefined, but consistent
e all see same data, but may be mingled fragments of updates
e usually when large writes broken into fragments
e enough information for application library to fix
e confusing
e cache consistency
e NO caches
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During Recovery
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G FS summary

e System for:

e very large files (logs, like for web indexing)

e very large writes

e reads usually sequential through whole log
» Replication approach:

e single master

e multiple chunkservers

e very simple consistency and recovery

e single master only involved in lookups, not read or write
e Long-term view:

e single master was a mistake

yes it’s on the exam 559

P atte I’S O N ,S I_aW for system building

e Before building a new system:
e measure old system
e demonstrate a problem
e \When you build the new system, two advantages:
e you have evidence you are solving a real problem
e you know exactly what to measure

This approach applies in many different contexts....
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