Distributed Systems

e 48 - Communication Basics
e 49 -NFS

e 50-AFS

e GFS

e TRIO

551

Google File System

e Needs
e need to handle massive files
e most mutations are appends
e co-design w/ applications (also an advantage)
e Assumptions
e built from hundreds, or thousands, of cheap machines
e failures are the common case
e Features
e relaxed consistency (also an advantage)
e atomic record append (without locking)
e no data caches
e append-only model means re-use not common
e host operating system does limited caching anyway

552

G FS two types of nodes

e multiple chunk servers
e hold fixed size chunks
e immutable once written
e identified by a globally unique 64-bit ID
e coordinator (GFS master)
e single machine holds all metadata in memory

persistent

= file and chunk namespaces (think directories)

= mappings from files to chunks

= persistent by flushing operations log locally, remotely before visible
soft state

= locations of chunk replicas

= on startup or recovery restore by asking chunkservers

total state is 64 bytes for each 64MB chunk

background garbage collection, replica reassignment and balancing

553

G FS architecture, and read

Application

GFS client

(file name, chunk index) | GFS master o~ /foo/bar

(chunk handle, byte range)

File namespace // chunk 2ef0

(chunk handle, /
chunk locations) Legend:
- mmm) Data messages

— Control messages

Instructions to chunkserver

Chunkserver state

chunk data

GFS chunkserver GFS chunkserver

Linux file system Linux file system

LS a9 ...

554

G FS pipelined writes

4 step 1
»| Client | Master

[

Secondary
Replica A

l

Primary
~1 Replica -

l Legend:
Control

Secondary — o
ReplicaB |«

A

555

G FS reliability

e startup and recovery treated identically:
e master polls all chunkservers for chunks they cache
* read namespace info from locally persistent state

e oOther
e master has shadows that are “almost” up to date

e chunkservers can flush to disk asynchronously because of
replication

556

G FS consistency model

e update consistency
e file namespace mutations are atomic (handled by master)
o state of a file region after append can be:
e consistentif clients all guaranteed to see same data
e (defined if consistent and last mutation correct not interleaved
e concurrent updates may leave system undefined, but consistent
e all see same data, but may be mingled fragments of updates
e usually when large writes broken into fragments
e enough information for application library to fix
e confusing
e cache consistency
e NO caches

557

During Recovery

GFS master = /foo/bar
" | chunk 2ef0

File namespace ,~

’
1]
s

Queries to chunkserver

Chunkserver state

Y Y
GFS chunkserver GFS chunkserver

Linux file system Linux file system

99 - 99 -

558

G FS summary

e System for:

e very large files (logs, like for web indexing)

e very large writes

e reads usually sequential through whole log
» Replication approach:

e single master

e multiple chunkservers

e very simple consistency and recovery

e single master only involved in lookups, not read or write
e Long-term view:

e single master was a mistake

yes it’s on the exam 559

P atte I’S O N ,S I_aW for system building

e Before building a new system:
e measure old system
e demonstrate a problem
e \When you build the new system, two advantages:
e you have evidence you are solving a real problem
e you know exactly what to measure

This approach applies in many different contexts....

560

Dlstnbuted Systems

48 - Communication Basics
e 49 - NFS
e 50-AFS
e GFS
e TRIO

561

