
CMSC424: Database Design
Introduction/Overview

Professor: Pete Keleher
 keleher@umd.edu

 Administrivia

 Motivation: Why study databases ? What are
databases ?

 Current Industry Outlook

 A typical DBMS at a glance

Today

 Professor: Peter Keleher
◦ 5146 Iribe Bldg
◦ keleher@umd.edu
◦ Class Webpage: 	
◦ http://ceres.cs.umd.edu/424

 Communication:
◦ Piazza
◦ Office hours
◦ Email to me: include 424 in subject as a last resort.
◦ Do not message me on ELMS, I will not read it.

Logistics

Logistics

 Grading
◦ Whole class is curved: avg is B min, stdev up or down for A, C
◦ Approximate cut-offs last year (not guaranteed)
● 85+: A-
● 75+: B-
● 65+: C-
● 60-: D/F

 Most had 40+ points (out of 50) on non-exams last
year
◦ Must average a passing grade on the total exam score

Logistics

 Web site: https://ceres.cs.umd.edu/424

 Discussion: https://piazza.com/class/m0390wa7rku3hn
 Grades: https://grades.cs.umd.edu

 Gradescope: https://www.gradescope.com/courses/424744

◦ homeworks, assignment submissions, graded exams
 Office Hours
◦ Pete (me) IRB 5146, Tues 1:30 - 3:30 for lectures, exams, logistics
◦ TAs (hours TBD):
●Shayan Shabihi (“shayan”)
●Anastasios Toumazatos (“tasos”)

 ELMS
◦ Nope!

Logistics

 Sign up for Piazza !
◦ If not already added

 Set up the computing environment (Assign. 0), and
make sure you can run Docker, PostgreSQL, etc.

 Upcoming:
◦ Homework 1 (due Monday),
◦ Assign 0: Environment. Setting up Docker and PostgreSQL
◦ due next Sunday midnight, but not graded/no submission
◦ Assign 1: SQL. (third Sunday, midnight)

Some To-Dos

 Explosion of data, in pretty much every domain
◦ Sensing devices and sensor networks that can monitor everything

24/7 from temperature to pollution to vital signs
◦ Increasingly sophisticated smart phones
◦ Internet, social networks makes it easy to publish data
◦ Scientific experiments and simulations produce astronomical

volumes of data
◦ Internet of Things
◦ Datafication: taking all aspects of life and turning them into data

(e.g., what you like/enjoy turned into a stream of your "likes”)
 How to handle that data? How to extract interesting

actionable insights and scientific knowledge?
 Data volumes expected to get much worse

Motivation: Data Overload

 Increasing data Volumes
◦ Scientific data: 1.5GB/genome -- can be sequenced in .5 hrs;

LHC generates 100TB of data a day
◦ 500M tweets per day (as of 2013)
◦ As of 2012: 2.5 Exabytes of data created every day
◦ EBay: Two data warehouses with 7.5PB and 40PB
◦ Walmart: 583 terabytes of sales and inventory data
◦ FICO monitors 2.5 billion active accounts worldwide

 Variety:
◦ Structured data, spreadsheets, photos, videos, natural text, ...

Four V’s of Big Data

 Velocity
◦ Sensors everywhere -- can generate tremendous volumes of

"data streams"
◦ Real-time analytics requires data to be consumed as fast as it is

generated

 Veracity
◦ How do you decide what to trust? How to remove noise? How

to fill in missing values?

Four V’s of Big Data

 Terms increasingly used synonymously: also data
analytics, data mining, business intelligence
◦ Loosely used for any process where interesting things are

inferred from data
◦ Google search: “How Big Data Will Change”

 Data scientist called the sexiest job of the 21st century
◦ The term has becoming very muddled at this point

Big Data and Data Science to the Rescue

Overhyped Words

 No: Extracting insights and knowledge from data very
important, and will continue to increase in importance
◦ Big data techniques are revolutionizing things in many domains like

Education, Food Supply, Disease Epidemics, ...
 But: it is not much different from what we, especially

statisticians, have been doing for many years
 What is different?
◦ Much more data is digitally available than was before
◦ Inexpensive computing + Cloud + Easy-to-use programming

frameworks = Much easier to analyze it
◦ Often: large-scale data + simple algorithms > small data +

complex algorithms
● Changes how you do analysis dramatically

Is it all hype?

 How do we do anything with this data?

 Where and how do we store it ?
◦ Disks are doubling every 18 months or so -- not enough
◦ In many cases, the data is not actually recorded as it is; summarized first

 What if the disks crash ?
◦ Very common, especially with 10,000’s of disks

 How do we ensure “correctness” ?
◦ What if the system crashes in the middle of an ATM transaction ?
● Can’t have money disappearing
◦ What happens when a million people try to buy tickets to <your favorite

artist>’s concert at the same time ?

Motivation: Data Overload

 What to do with the data ? How to process/analyze it ?
◦ text search ?
● Very limited

◦ “find the stores with the maximum increase in sales in last month”
● We can’t expect the users to write Java programs

◦ “how much time from here to Pittsburgh if I start at 2pm ?”
● Data is there; more will be soon (GPS, live traffic data)
● Requires predictive capabilities

◦ Increasing need to convert “information” to “knowledge”: Data mining
● “How should we replicate different movies?” (Netflix)
● Find videos with this type of an event (say car break-ins)
● Mine the “blogs” to detect “buzz”

Motivation: Data Overload

 Speed !!
◦ With TB’s of data, just finding something (even if you know what), is not easy
● Reading a file with TB of data can take hours
◦ Imagine a bank and millions of ATMs
● How much time does it take you to do a withdrawal ?
● The data is not local

 How do we guarantee the data will be there 10 years from now ?

 Privacy and security !!!
◦ Every other day we see some database leaked on the web
● identity fraud, influencing elections…
◦ How to make sure different users’ data is protected from each other

Motivation: Data Overload

 Drawbacks of using file systems to store data:
◦ Data redundancy and inconsistency
● Multiple file formats, duplication of information in different files
◦ Difficulty in accessing data
● Need to write a new program to carry out each new task
◦ Data isolation — multiple files and formats
◦ Integrity problems
● Integrity constraints (e.g., account balance > 0) become “buried” in

program code rather than being stated explicitly
● Hard to add new constraints or change existing ones

Why not use file systems ?

 Drawbacks of using file systems to store data:
◦ Atomicity of updates
● Failures may leave database in an inconsistent state with partial

updates carried out
● Example: Transfer of funds from one account to another should

either complete or not happen at all
◦ Concurrent access by multiple users
● Concurrent access needed for performance
● Uncontrolled concurrent accesses can lead to inconsistencies
● Example: Two people reading a balance (say 100) and updating it by

withdrawing money (say 50 each) at the same time
◦ Security problems
● Hard to provide user access to some, but not all, data

Why not use file systems ?

 Administrivia
◦ Homework 1 due Monday 11:59 pm

Today

 Provide a systematic way to answer many of these questions…
 Aim is to allow easy management of high volumes of data
◦ Storing , Updating, Querying, Analyzing ….

 What is a Database ?
◦ A large, integrated collection of (mostly structured) data
◦ Typically models and captures information about a real-world enterprise
● Entities (e.g. courses, students)
● Relationships (e.g. John is taking CMSC 424)	 	 	 	
● Usually also contains:
● Knowledge of constraints on the data (e.g. course capacities)
● Business logic (e.g. pre-requisite rules)
● Encoded as part of the data model (preferable) or through external programs

DBMSs to the Rescue

 Massively successful for highly structured data

◦ Why ? Structure in the data (if any) can be exploited for
ease of use and efficiency
● If there is no structure in the data, hard to do much
● Contrast managing emails vs managing photos
◦ Much of the data we need to deal with is highly structured
◦ Some data is semi-structured
● E.g.: Resumes, Webpages, Blogs etc.
◦ Some has complicated structure
● E.g.: Social networks
◦ Some has no structure
● E.g.: Text data, Video/Image data etc.

DBMSs to the Rescue

◦ Structured data often has very simple structures
● E.g. Data that can be represented in tabular forms
◦ Significantly easier to deal with
◦ We will focus on such data for much of the class

Structured vs Unstructured Data

Account
bname acct_no balance
Downtown

Mianus
Perry
R.H

A-101
A-215
A-102
A-305

500
700
400
350

Customer
cname cstreet ccity

Jones
Smith
Hayes
Curry

Lindsay

Main
North
Main
North
Park

Harrison
Rye

Harrison
Rye

Pittsfield

 Some data has a little more complicated
structure
◦ E.g graph structures
● Map data, social networks data, the web

link structure etc.
◦ Can convert to tabular forms for storage, but

may not be optimal
◦ Queries often reason about graph structure
● Find my “Erdos number”
● Suggest friends based on current friends

◦ Growing importance in recent years in a
variety of domains: Biological, social
networks, web…

Structured vs Unstructured Data

 Increasing amount of data in a semi-structured format
◦ XML – Self-describing tags (HTML ?)
◦ Complicates a lot of things
◦ We will discuss this toward the end

 A huge amount of data is unfortunately unstructured
◦ Books, WWW
◦ Amenable to pretty much only text search… so far
● Information Retrieval research deals with this topic

◦ What about Google search ?
● Google search is mainly successful because it uses link

structure (in its original incarnation)

 Video ? Music ?
◦ Can represent in DBMS’s, but can’t really operate on them

Structured vs Unstructured Data

circle size == page importance == pagerank
more incoming links higher pagerank

incoming links from important pages higher pagerank

 Massively successful for highly structured data
◦ Two Key Concepts:
● Data Modeling: Allows reasoning about the data at a high level
● e.g. “emails” have “sender”, “receiver”, “…”
● Once we can describe the data, we can start “querying” it

● Data Abstraction/Independence:
● Layer the system so that the users/applications are insulated from

the low-level details

DBMSs to the Rescue

 Data modeling
◦ Data model: A collection of concepts that describes how data is represented

and accessed
◦ Schema: A description of a specific collection of data, using a given data model

◦ Some examples of data models that we will see
● Relational, Entity-relationship model, XML, JSON…
● Object-oriented, object-relational, semantic data model, RDF…

◦ Why so many models ?
● Tension between descriptive power and ease of use/efficiency
● More powerful models more data can be represented
● More powerful models harder to use, to query, and less efficient

DBMSs to the Rescue: Data Modeling

 Probably the most important purpose of a DBMS
 Goal: Hiding low-level details from the users of the

system
◦ Alternatively: the principle that
● applications and users should be insulated from how data is

structured and stored

◦ Also called data independence

 Through use of logical abstractions

DBMSs to the Rescue: Data Abstraction

Data Abstraction

Logical
Level

Physical
Level

View Level

View 1 View 2 View n…

How data is actually stored ?
 e.g. are we using disks ? Which
 file system ?

What data is stored ?
 describe data properties such as
 data semantics, data relationships

What data users and
application programs
see ?

Data Abstraction

Logical
Level

Physical
Level

View Level

View 1 View 2 View n…
Logical Data Independence
Protection from logical changes
to the schema

Physical Data Independence
Protection from changes to the
physical structure of the data

Data Abstractions: Example

Logical
Level

Physical
Level

View Level

View 1 View 2 View n…

Logical Schema
students(sid, name, major, …)
courses(cid, name, …)
enrolled(sid, cid, …)

A “view” Schema
course_info(#registered,…)

Physical Schema
all students in one file ordered by sid
courses split into multiple files by colleges

 A DBMS is a software system designed to store, manage,	
facilitate access to databases

 Provides:
◦ Data Definition Language (DDL)
● For defining and modifying the schemas
◦ Data Manipulation Language (DML)
● For retrieving, modifying, analyzing the data itself
◦ Guarantees about correctness in presence of failures and concurrency,

data semantics etc.

 Common use patterns
◦ Handling transactions (e.g. ATM Transactions, flight reservations)
◦ Archival (storing historical data)
◦ Analytics (e.g. identifying trends, Data Mining)

What about a Database System ?

 SQL (sequel): Structured Query Language

 Data definition (DDL)
◦ create table instructor (

 ID char(5),
 name varchar(20),
 dept_name varchar(20),
 salary numeric(8,2))

 Data manipulation (DML)
◦ Example: Find the name of the instructor with ID 22222
	 select name
	 from instructor
	 where	 instructor.ID = ‘22222’

Relational DBMS: SQL

 Relational DBMSs
◦ Oracle, IBM DB2, Microsoft SQL Server, Sybase

 Open source alternatives
◦ MySQL, PostgreSQL, Apache Derby, BerkeleyDB (mainly a storage

engine – no SQL), neo4j (graph data) …

 Data Warehousing Solutions
◦ Geared towards very large volumes of data and on analyzing them
◦ Long list: Teradata, Oracle Exadata, Netezza (based on FPGAs), Aster

Data (founded 2005), Vertica (column-based), Kickfire, Xtremedata
(released 2009), Sybase IQ, Greenplum (eBay, Fox Networks use them)
◦ Usually sell package/services and charge per TB of managed data
◦ Many (especially recent ones) start with MySQL or PostgreSQL and make

them parallel/faster etc..

Current Industry Outlook

 Ongoing debate/issue
◦ Cloud computing seems to eschew DBMSs in favor of homegrown solutions
◦ E.g. Google, Facebook, Amazon etc…

 MapReduce: A paradigm for large-scale data analysis
◦ Hadoop: An open source implementation
◦ Apache Spark: a better open source implementation

 Why ?
◦ DBMSs can’t scale to the needs, not fault-tolerant enough
● These apps don’t need things like transactions, that complicate DBMSs (???)
◦ MapReduce favors Unix-style programming, doesn’t require SQL
● Try writing SVMs or decision trees in SQL
◦ Cost
● Companies like Teradata may charge $100,000 per TB of data managed

Web Scale Data Management, Analysis

 Bigtable-like
◦ Called “key-value stores”
◦ Think highly distributed hash tables
◦ Allow some transactional capabilities – still evolving area
◦ PNUTS (Yahoo), Apache Cassandra (Facebook), Dynamo (Amazon), and many

many others

 Mapreduce-like
◦ Hadoop (open source), Pig (@Yahoo), Dryad (@Microsoft), Spark
◦ Amazon EC2 Framework
◦ Not really a database – but increasing declarative SQL-like capabilities are being

added (e.g. HIVE at Facebook)

 Much ongoing research in industry and academia

Current Industry Outlook

 Data Models
◦ Conceptual representation of the data

 Data Retrieval
◦ How to ask questions of the database
◦ How to answer those questions

 Data Storage
◦ How/where to store data, how to access it

 Data Integrity
◦ Manage crashes, concurrency
◦ Manage semantic inconsistencies

 Not fully disjoint categorization !!

DBMS at a glance

 Example schema: R(A, B)
 Practical languages
◦ SQL
● select A from R where B = 5;
◦ Datalog (sort of practical)
● q(A) :- R(A, 5)

 Formal languages
◦ Relational algebra

 πA (σB=5 (R))

◦ Tuple relational calculus
	 { t : {A} | ∃ s : {A, B} (R(A, B) ∧ s.B = 5) }
◦ Domain relational calculus
● Similar to tuple relational calculus

Relational Query Languages

