CMSC424: Database Design Introduction/Overview

Professor: Pete Keleher keleher@umd.edu

Today

- Administrivia
- Motivation: Why study databases ? What are databases ?
- Current Industry Outlook
- A typical DBMS at a glance

Logistics

Professor: Peter Keleher

- 5146 Iribe Bldg
- keleher@umd.edu
- Class Webpage:
- http://ceres.cs.umd.edu/424

Communication:

- Piazza
- Office hours
- Email to me: *include* 424 *in subject* as a last resort.
- Do not message me on ELMS, I will not read it.

Logistics

Grading

All grades will be on grades.cs.umd.edu.

28% Programming Assignments

We have 7 graded programming assignments. Each is worth 4% of the grade (1a + 1b are each 2%). All are due **Sunday at midnight**.

60% Exams

We have (3) exams:

- Exam 1 is 20%.
- Exam 2 is 20%.
- Exam 3 is 20%.
- there is no final exam

12% Weekly Homeworks 12 weekly homeworks:

- Each is worth 1%.
- All are due Monday at midnight.

Logistics

- Grading
 - Whole class is curved: avg is B min, stdev up or down for A, C
 - Approximate cut-offs last year (not guaranteed)
 - 85+: A-
 - 75+: B-
 - 65+: C-
 - 60-: D/F

 Most had 40+ points (out of 50) on non-exams last year

Must average a passing grade on the total exam score

Logistics

- Web site: <u>https://ceres.cs.umd.edu/424</u>
- Discussion: <u>https://piazza.com/class/m0390wa7rku3hn</u>
- Grades: https://grades.cs.umd.edu
- Gradescope: <u>https://www.gradescope.com/courses/424744</u>
 - homeworks, assignment submissions, graded exams
- Office Hours
 - Pete (me) IRB 5146, Tues 1:30 3:30 for lectures, exams, logistics
 - TAs (hours TBD):
 - Shayan Shabihi ("shayan")
 - Anastasios Toumazatos ("tasos")
- ELMS
 - Nope!

Some To-Dos

- Sign up for Piazza !
 - If not already added
- Set up the computing environment (Assign. 0), and make sure you can run Docker, PostgreSQL, etc.
- Upcoming:
 - Homework 1 (due Monday),
 - Assign 0: Environment. Setting up Docker and PostgreSQL
 - due *next* Sunday midnight, but not graded/no submission
 - Assign 1: SQL. (third Sunday, midnight)

Motivation: Data Overload

- Explosion of data, in pretty much every domain
 - Sensing devices and sensor networks that can monitor everything 24/7 from temperature to pollution to vital signs
 - Increasingly sophisticated smart phones
 - Internet, social networks makes it easy to publish data
 - Scientific experiments and simulations produce astronomical volumes of data
 - Internet of Things
 - <u>Datafication</u>: taking all aspects of life and turning them into data (e.g., what you like/enjoy turned into a stream of your "likes")
- How to handle that data? How to extract interesting actionable insights and scientific knowledge?
- Data volumes expected to get much worse

Four V's of Big Data

- Increasing data Volumes
 - <u>Scientific data</u>: 1.5GB/genome -- can be sequenced in .5 hrs; LHC generates 100TB of data a day
 - 500M tweets per day (as of 2013)
 - As of 2012: 2.5 Exabytes of data created every day
 - EBay: Two data warehouses with 7.5PB and 40PB
 - Walmart: 583 terabytes of sales and inventory data
 - FICO monitors 2.5 billion active accounts worldwide
- Variety:
 - Structured data, spreadsheets, photos, videos, natural text, ...

Four V's of Big Data

- Velocity
 - Sensors everywhere -- can generate tremendous volumes of "data streams"
 - Real-time analytics requires data to be consumed as fast as it is generated
- Veracity
 - How do you decide what to trust? How to remove noise? How to fill in missing values?

Big Data and Data Science to the Rescue

- Terms increasingly used synonymously: also data analytics, data mining, business intelligence
 - Loosely used for any process where interesting things are inferred from data
 - Google search: "How Big Data Will Change"
- Data scientist called the sexiest job of the 21st century
 - The term has becoming very muddled at this point

Overhyped Words

Is it all hype?

- No: Extracting insights and knowledge from data very important, and will continue to increase in importance
 - Big data techniques are revolutionizing things in many domains like Education, Food Supply, Disease Epidemics, ...
- But: it is not much different from what we, especially statisticians, have been doing for many years
- What is different?
 - Much more data is digitally available than was before
 - Inexpensive computing + Cloud + Easy-to-use programming frameworks = Much easier to analyze it
 - Often: large-scale data + simple algorithms > small data + complex algorithms
 - Changes how you do analysis dramatically

Motivation: Data Overload

- How do we do anything with this data?
- Where and how do we store it ?
 - Disks are doubling every 18 months or so -- not enough
 - In many cases, the data is not actually recorded as it is; summarized first
- What if the disks crash ?
 - Very common, especially with 10,000's of disks
- How do we ensure "correctness" ?
 - What if the system crashes in the middle of an ATM transaction ?
 - Can't have money disappearing
 - What happens when a million people try to buy tickets to <*your favorite* artist>'s concert at the same time ?

Motivation: Data Overload

- What to do with the data ? How to process/analyze it ?
 - text search ?
 - Very limited
 - "find the stores with the maximum increase in sales in last month"
 - We can't expect the users to write Java programs
 - "how much time from here to Pittsburgh if I start at 2pm ?"
 - Data is there; more will be soon (GPS, live traffic data)
 - Requires predictive capabilities
 - Increasing need to convert "information" to "knowledge": Data mining
 - "How should we replicate different movies?" (Netflix)
 - Find videos with this type of an event (say car break-ins)
 - Mine the "blogs" to detect "buzz"

Motivation: Data Overload

- Speed !!
 - With TB's of data, just finding something (even if you know what), is not easy
 - Reading a file with TB of data can take hours
 - Imagine a bank and millions of ATMs
 - How much time does it take you to do a withdrawal ?
 - The data is not local
- How do we guarantee the data will be there 10 years from now ?
- Privacy and security !!!
 - Every other day we see some database leaked on the web
 - identity fraud, influencing elections...
 - · How to make sure different users' data is protected from each other

Why not use file systems ?

- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Data isolation multiple files and formats
 - Integrity problems
 - Integrity constraints (e.g., account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Why not use file systems ?

- Drawbacks of using file systems to store data:
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
 - Concurrent access by multiple users
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time
 - Security problems
 - Hard to provide user access to some, but not all, data

Today

- Administrivia
 - Homework 1 due Monday 11:59 pm

DBMSs to the Rescue

- Provide a systematic way to answer many of these questions...
- Aim is to allow easy management of high volumes of data
 - Storing , Updating, Querying, Analyzing
- What is a Database ?
 - A large, integrated collection of (mostly structured) data
 - Typically models and captures information about a real-world *enterprise*
 - Entities (e.g. courses, students)
 - Relationships (e.g. John is taking CMSC 424)
 - Usually also contains:
 - Knowledge of constraints on the data (e.g. course capacities)
 - Business logic (e.g. pre-requisite rules)
 - Encoded as part of the data model (preferable) or through external programs

DBMSs to the Rescue

- Massively successful for highly structured data
 - Why ? Structure in the data (if any) can be exploited for ease of use and efficiency
 - If there is no structure in the data, hard to do much
 - Contrast managing emails vs managing photos
 - Much of the data we need to deal with is highly structured
 - Some data is *semi-structured*
 - E.g.: Resumes, Webpages, Blogs etc.
 - Some has complicated structure
 - E.g.: Social networks
 - Some has no structure
 - E.g.: Text data, Video/Image data etc.

Structured vs Unstructured Data

- Structured data often has very simple structures
 - E.g. Data that can be represented in tabular forms
 - Significantly easier to deal with
 - We will focus on such data for much of the class

Account		
bname	acct_no	balance
Downtown Mianus Perry R.H	A-101 A-215 A-102 A-305	500 700 400 350

Customer			
cname	cstreet	ccity	
Jones Smith Hayes Curry Lindsay	Main North Main North Park	Harrison Rye Harrison Rye Pittsfield	

Structured vs Unstructured Data

- Some data has a little more complicated structure
 - E.g graph structures
 - Map data, social networks data, the web link structure etc.
 - Can convert to tabular forms for storage, but may not be optimal
 - Queries often reason about graph structure
 - Find my "Erdos number"
 - Suggest friends based on current friends
 - Growing importance in recent years in a variety of domains: Biological, social networks, web...

Structured vs Unstructured Data

- Increasing amount of data in a semi-structured format
 - XML Self-describing tags (HTML ?)
 - Complicates a lot of things
 - We will discuss this toward the end
- A huge amount of data is unfortunately unstructured
 - Books, WWW
 - Amenable to pretty much only text search... so far
 - Information Retrieval research deals with this topic
 - What about Google search ?
 - Google search is mainly successful because it uses link structure (in its original incarnation)
- Video ? Music ?
 - Can represent in DBMS's, but can't really operate on them

circle size == page importance == pagerank more incoming links → higher pagerank incoming links from important pages → higher pagerank

DBMSs to the Rescue

- Massively successful for highly structured data
 - Two Key Concepts:
 - Data Modeling: Allows reasoning about the data at a high level
 - e.g. "emails" have "sender", "receiver", "..."
 - Once we can describe the data, we can start "querying" it
 - Data Abstraction/Independence:
 - Layer the system so that the users/applications are insulated from the low-level details

DBMSs to the Rescue: Data Modeling

- Data modeling
 - Data model: A collection of concepts that describes how data is represented and accessed
 - Schema: A description of a specific collection of data, using a given data model
 - Some examples of data models that we will see
 - Relational, Entity-relationship model, XML, JSON...
 - Object-oriented, object-relational, semantic data model, RDF...
 - Why so many models ?
 - Tension between descriptive power and ease of use/efficiency
 - More powerful models \rightarrow more data can be represented
 - More powerful models \rightarrow harder to use, to query, and less efficient

DBMSs to the Rescue: Data Abstraction

- Probably <u>the</u> most important purpose of a DBMS
- Goal: Hiding <u>low-level details</u> from the users of the system
 - Alternatively: the principle that
 - applications and users should be insulated from how data is structured and stored
 - Also called *data independence*
- Through use of *logical abstractions*

Data Abstraction

What about a Database System?

- A DBMS is a software system designed to store, manage, facilitate access to databases
- Provides:
 - Data Definition Language (DDL)
 - For defining and modifying the schemas
 - Data Manipulation Language (DML)
 - For retrieving, modifying, analyzing the data itself
 - Guarantees about correctness in presence of failures and concurrency, data semantics etc.
- Common use patterns
 - Handling transactions (e.g. ATM Transactions, flight reservations)
 - Archival (storing historical data)
 - Analytics (e.g. identifying trends, Data Mining)

Relational DBMS: SQL

- SQL (sequel): Structured Query Language
- Data definition (DDL)
 - create table instructor (

ID char(5), name varchar(20), dept_name varchar(20), salary numeric(8,2))

- Data manipulation (DML)
 - Example: Find the name of the instructor with ID 22222
 select name

from instructor

where instructor.ID = '22222'

Current Industry Outlook

- Relational DBMSs
 - Oracle, IBM DB2, Microsoft SQL Server, Sybase
- Open source alternatives
 - MySQL, PostgreSQL, Apache Derby, BerkeleyDB (mainly a storage engine – no SQL), neo4j (graph data) ...

Data Warehousing Solutions

- Geared towards very large volumes of data and on analyzing them
- Long list: Teradata, Oracle Exadata, Netezza (based on FPGAs), Aster Data (founded 2005), Vertica (column-based), Kickfire, Xtremedata (released 2009), Sybase IQ, Greenplum (eBay, Fox Networks use them)
- Usually sell package/services and charge per TB of managed data
- Many (especially recent ones) start with MySQL or PostgreSQL and make them parallel/faster etc..

Web Scale Data Management, Analysis

- Ongoing debate/issue
 - Cloud computing seems to eschew DBMSs in favor of homegrown solutions
 - E.g. Google, Facebook, Amazon etc...
- MapReduce: A paradigm for large-scale data analysis
 - Hadoop: An open source implementation
 - Apache Spark: a better open source implementation
- Why?
 - DBMSs can't scale to the needs, not fault-tolerant enough
 - These apps don't need things like transactions, that complicate DBMSs (???)
 - MapReduce favors Unix-style programming, doesn't require SQL
 - Try writing SVMs or decision trees in SQL
 - Cost
 - Companies like Teradata may charge \$100,000 per TB of data managed

Current Industry Outlook

- Bigtable-like
 - Called "key-value stores"
 - Think highly distributed hash tables
 - Allow some transactional capabilities still evolving area
 - PNUTS (Yahoo), Apache Cassandra (Facebook), Dynamo (Amazon), and many many others
- Mapreduce-like
 - Hadoop (open source), Pig (@Yahoo), Dryad (@Microsoft), Spark
 - Amazon EC2 Framework
 - Not really a database but increasing declarative SQL-like capabilities are being added (e.g. HIVE at Facebook)
- Much ongoing research in industry and academia

DBMS at a glance

- Data Models
 - Conceptual representation of the data
- Data Retrieval
 - How to ask questions of the database
 - How to answer those questions
- Data Storage
 - How/where to store data, how to access it
- Data Integrity
 - Manage crashes, concurrency
 - Manage semantic inconsistencies
- Not fully disjoint categorization !!

Relational Query Languages

- Example schema: R(A, B)
- Practical languages
 - <u>SQL</u>
 - select A from R where B = 5;
 - Datalog (sort of practical)
 - q(A) :- R(A, 5)
- Formal languages
 - Relational algebra

 $\pi_{A}(\sigma_{B=5}(R))$

<u>Tuple relational calculus</u>

{ $t : \{A\} \mid \exists s : \{A, B\} (R(A, B) \land s.B = 5) \}$

- Domain relational calculus
 - Similar to tuple relational calculus