
 Overview of modeling
 Relational Model (Chapter 2)
◦ Basics
◦ Keys
◦ Relational operations
◦ Relational algebra basics

 SQL
◦ Basic Data Definition (3.2)
◦ Setting up the PostgreSQL database
◦ Basic Queries (3.3-3.5)
◦ Null values (3.6)
◦ Aggregates (3.7)

Outline

 Example schema: R(A, B)
 Practical languages
◦ SQL
● select A from R where B = 5;
◦ Datalog (sort of practical)
● q(A) :- R(A, 5)

 Formal languages
◦ Relational algebra

 πA (σB=5 (R))

◦ Tuple relational calculus
	 { t : {A} | ∃ s : {A, B} (R(A, B) ∧ s.B = 5) }

◦ Domain relational calculus
● Similar to tuple relational calculus

Relational Query Languages

 Some of languages are “procedural” and provide a set
of operations
◦ Each operation takes one or two relations as input, and

produces a single relation as output
◦ Examples: Relational Algebra

 The “non-procedural” (also called “declarative”)
languages specify the output, but don’t specify the
operations
◦ SQL, Relational calculus
◦ Datalog (used as an intermediate layer in quite a few systems

today)

Modeling Languages

Select Operation

Relation r σ
A=B ∧ D > 5

(r) A B C D

α

β

α

β

1

23

7

10

Choose a subset of the tuples that satisfies some predicate
Denoted by σ in relational algebra

A B C D

α

α

β

β

α

β

β

β

1

5

12

23

7

7

3

10

Project
Choose a subset of the columns (for all rows)
Denoted by ∏ in relational algebra

Relation r A B C D

α

α

β

β

α

β

β

β

1

5

12

23

7

7

3

10

∏
A,D

(r) A D

α

α

β

β

7

7

3

10

A D

α

β

β

7

3

10

Relational algebra following “set” semantics – so no duplicates
SQL allows for duplicates – we will cover the formal semantics later

Set Union, Difference
Relation r, s

A B

α

α

β

1

2

1

A B

α

β

2

3

r
s

 r ∪ s: A B

α

α

β

β

1

2

1

3

A B

α

β

1

1

 r – s:

Must be compatible schemas

What about intersection ?
 Can be derived
 r ∩ s = r – (r – s);

 r ∩ s: A B

α 2

Cartesian Product

Relation r, s
 r × s:

A B

α
β

1
2

C D E

α
β
β
γ

10
10
20
10

a
a
b
br

s

A B

α
α
α
α
β
β
β
β

1
1
1
1
2
2
2
2

C D

α
β
β
γ
α
β
β
γ

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

Combine tuples from two relations

If one relation contains N tuples and the other contains M tuples, the
result would contain N*M tuples

The result is rarely useful – almost always you want pairs of tuples that
satisfy some condition

Joins

Relation r, s
 r ⋈A = C s:

A B

α

β

1

2

C D

α
β
β
γ

10
10
20
10

E

a
a
b
br

s

A B

α
α
α
α
β
β
β
β

1
1
1
1
2
2
2
2

C D

α
β
β
γ
α
β
β
γ

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

Combine tuples from two relations if the pair of tuples satisfies some constraint
(equivalent to Cartesian Product followed by a Select)

Natural Join
Combine tuples from two relations if the pair of tuples agree on the
common columns (with the same name) 2.2 Database Schema 43

dept name building budget
Biology Watson 90000
Comp. Sci. Tay lor 100000
Elec. Eng. Tay lor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although i t is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where i t is clear whether wemean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about al l the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continuewith our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester.Weneed a relation to describeeach individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

2.1 Structure of Relational Databases 41

course id prereq id
BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 2.3 The prereq relation.

Thus, in the relational model the term relation is used to refer to a table, while
the term tuple is used to refer to a row. Similarly, the term attribute refers to a
column of a table.

Examining Figure2.1, wecan see that the relation instructor has four attributes:
ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a relation,
i.e., containing aspecific set of rows. The instance of instructor shown in Figure2.1
has 12 tuples, corresponding to 12 instructors.

In this chapter,we shall beusinganumber of di fferent relations to illustrate the
various concepts underlying the relational data model. These relations represent
part of a university. They do not include al l the data an actual university database
would contain, in order to simplify our presentation. Weshall discuss criteria for
the appropriateness of relational structures in great detail in Chapters 7 and 8.

The order in which tuples appear in a relation is ir relevant, since a relation
is a set of tuples. Thus, whether the tuples of a relation are listed in sorted order,
as in Figure 2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in

ID name dept name salary
22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

Figure 2.4 Unsorted display of the instructor relation.

department ⋈ instructor:50 Chapter 2 Introduction to the Relational Model

ID name salary dept name building budget
10101 Srinivasan 65000 Comp. Sci. Tay lor 100000
12121 Wu 90000 Finance Painter 120000
15151 Mozart 40000 Music Packard 80000
22222 Einstein 95000 Physics Watson 70000
32343 El Said 60000 History Painter 50000
33456 Gold 87000 Physics Watson 70000
45565 Katz 75000 Comp. Sci. Tay lor 100000
58583 Califieri 62000 History Painter 50000
76543 Singh 80000 Finance Painter 120000
76766 Crick 72000 Biology Watson 90000
83821 Brandt 92000 Comp. Sci. Tay lor 100000
98345 Kim 80000 Elec. Eng. Tay lor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

of their dept name attributes are the same. A l l such matching pairs of tuples are
present in the join result. In general, the natural join operation on two relations
matches tuples whose values arethe same on all attribute names that arecommon
to both relations.

TheCartesian product operation combines tuples f rom two relations, but unlike
the join operation, its result contains all pairs of tuples from the two relations,
regardless of whether their attribute valuesmatch.

Because relationsaresets, wecan perform normal set operationson relations.
The union operation performs a set union of two “similarly structured” tables
(say a table of all graduate students and a table of all undergraduate students).
For example, one can obtain the set of al l students in a department. Other set
operations, such as intersection and set difference can be performed aswell.

As we noted earlier, we can perform operations on the results of queries. For
example, if wewant to find the ID and salary for those instructors who havesalary
greater than $85,000, we would perform the first two operations in our example
above. First we select those tuples from the instructor relation where the salary
value is greater than $85,000 and then, f rom that result, select the two attributes
ID and salary, resulting in the relation shown in Figure 2.13 consisting of the ID

ID salary
12121 90000
22222 95000
33456 87000
83821 92000

Figure 2.13 Result of selecting attributes ID and salary of instructors with salary greater
than $85,000.

Rename Operation
 Allows us to name, and therefore to refer to, the results of relational-algebra

expressions.
 Allows us to refer to a relation by more than one name.
 Example:
 		 	 	 ρ x (E)

 returns the expression E under the name X

 If a relational-algebra expression E has arity n, then

 ρx (A1, A2, …, An) (E)

 returns the result of expression E under the name X, and with the

 attributes renamed to A1, A2, …., An.

Relational Algebra
 Those are the basic operations

 What about SQL Joins ?
◦ Compose multiple operators together
 σA=C(r x s)

 Additional Operations
◦ Set intersection
◦ Natural join
◦ Division
◦ Assignment

Additional Operators
 Set intersection (∩)
◦ r ∩ s = r – (r – s);
◦ SQL Equivalent: intersect

 Assignment (←)
◦ A convenient way to right complex RA expressions
◦ Essentially for creating “temporary” relations

● 	temp1 ← ∏R-S (r)

◦ SQL Equivalent: “create table as…”

Additional Operators: Joins
 Natural join (⋈)
◦ A Cartesian product with equality condition on common attributes
◦ Example:
● if r has schema R(A, B, C, D), and if s has schema S(E, B, D)
● Common attributes: B and D
● Then:

r ⋈ s = ∏r.A, r.B, r.C, r.D, s.E (σr.B = s.B ∧ r.D = s.D (r x s))

 SQL Equivalent:
◦ select r.A, r.B, r.C, r.D, s.E from r, s where r.B = s.B and r.D = s.D, OR
◦ select * from r natural join s

Additional Operators: Joins
 Equi-join
◦ A join that only has equality predicates

 Theta-join (⋈θ)

◦ r ⋈θ s = σθ(r x s) (arbitrary predicates)

 Left outer join (⟕)
◦ If have r(A, B), s(B, C), then:

◦ r ⟕ s = (r ⋈ s) ∪ (“all non-matching rows in r w/ nulls for s’s attributes”)

◦ What is (r – πr.A, r.B(r ⋈ s))?

◦ r ⟕ s = (r ⋈ s) ∪ ρtemp (A, B, C) ((r – πr.A, r.B(r ⋈ s)) × {(NULL)})

(rows of r that match rows of s)

Additional Operators: Join Variations
 Tables: r(A, B), s(B, C)

name Symbol SQL Equivalent RA expression

cross product × select * from r, s; r × s

natural join ⋈ natural join πr.A, r.B, s.Cσr.B = s.B(r x s)

equi-join ⋈θ (theta must be equality)

theta join ⋈θ from .. where θ; σθ(r x s)

left outer join r ⟕ s left outer join (with “on”) (see previous slide)

full outer join r ⟗ s full outer join (with “on”) -

(left) semijoin r ⋉ s none πr.A, r.B(r ⋈ s)

(left) antijoin r ⊲ s none
r - πr.A, r.B(r ⋈ s)

Additional Operators: Division
 Assume r(R), s(S), for queries where S ⊆ R:
◦ r ÷ s

 Think of it as “opposite of Cartesian product”
◦ r ÷ s = t iff t × s ⊆ r

C D

α
β
β
γ

10
10
20
10

E

a
a
b
b

A B

α

β

1

2

A B

α
α
α
α
β
Β
β
β

1
1
1
1
2
2
2
2

C D

α
β
β
γ
α
β
β
γ

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

÷ =

Relational Algebra Examples
Find all loans of over $1200:

σamount > 1200 (loan)

Find the loan number for each loan of an amount greater than $1200:

∏loan-number (σamount > 1200 (loan))

Find names of all customers who have a loan, account, or both, from the bank:

∏customer-name (borrower) ∪ ∏customer-name (depositor)

Relational Algebra Examples
Find names of customers who have a loan and an account at bank:
	 	 ∏customer-name (borrower) ∩ ∏customer-name (depositor)

Find names of customers who have a loan at the UMD branch:
 ∏customer-name (σbranch-name=“UMD” (σborrower.loan-number = loan.loan-number(borrower x loan)))

Relational Algebra Examples
Find largest account balance, assume relation is {(1), (2), (3)}:

Rename the account relation to d:
∏balance(account) - ∏account.balance (σaccount.balance < d.balance (account x ρd (account)))

1,1
1,2
1,3
2,1
2,2
2,3
3,1
3,2
3,3

1,2
1,3
2,3

1
2

1
2
3

1
2
3

