
 Overview of modeling
 Relational Model (Chapter 2)
◦ Basics
◦ Keys
◦ Relational operations
◦ Relational algebra basics

 SQL
◦ Basic Data Definition (3.2)
◦ Setting up the PostgreSQL database
◦ Basic Queries (3.3-3.5)
◦ Null values (3.6)
◦ Aggregates (3.7)

Outline

56

Generalized Projection
• Extends the projection operation by allowing arithmetic functions to

be used in the projection list:

• E is any relational-algebra expression

• Each of F1, F2, …, Fn are are arithmetic expressions involving
constants and attributes in the schema of E.

• Given relation instructor(ID, name, dept_name, salary) where salary is
annual salary, get the name and monthly salary:

 	 	∏ name, salary/12 (instructor)

∏
F1, F2, …, Fn

 (E)

57

Aggregate Functions and Operations
• Aggregation functions take a collections of values and return a single values

	 	avg: average value
	min: minimum value
	max: maximum value
	 sum: sum of values
	 count: number of values

• Aggregate operation in relational algebra:

	 	
	

E is any relational-algebra expression
● G1, G2 …, Gn is a list of attributes on which to group (can be empty)
● Each Fi is an aggregate function over a group
● Each Ai is an attribute name

• Note: Some books/articles use γ instead of (Calligraphic G)

)()(,,(),(,,, 221121
E

nnn AFAFAFGGG !!

58

Aggregate Example
• Relation r:

A B

α
α
β
β

α
β
β
β

C

7
7
3

10

sum(c)

(r) sum(c)

27

59

• Find the average salary in each department
 dept_name avg(salary) (instructor)

Aggregate Operation – Example

avg(salary)

60

Aggregate Functions (Cont.)
• Result of aggregation does not have a name

● Can use rename operation to give it a name
● For convenience, we permit renaming as part of aggregate

operation

dept_name

 avg(salary) as avg_sal
(instructor)

61

Modification of the Database
• The content of the database may be modified using the following

operations:
● Deletion
● Insertion
● Updating

• All these operations can be expressed using the assignment operator

The result of R x S potentially has duplicated attributes. For example:
 r(A,B) X s(B,C)
results in tuples w/ attributes {A, B, B, C}.
“∏R ∪ S” can be use to get rid of the extra B.

Duplicated tuples are different, not present in the relational algebra.
62

Multiset Relational Algebra
• Pure relational algebra removes all duplicate tuples

● e.g. after projection
• Multiset relational algebra retains duplicates, to match SQL semantics

● SQL duplicate retention was initially for efficiency, but is now a feature
• Multiset relational algebra defined as follows:

● selection: output has as many duplicates of tuple as input, if the tuple satisfies the
selection

● projection: one tuple per input tuple, even if it is a duplicate
● cross product: If there are m copies of t1 in r, and n copies of t2 in s, there are m x n

copies of t1.t2 in r x s
● Other operators similarly defined

− union: m + n copies

− intersection: min(m, n) copies
− difference: max(0, m – n) copies

63

 Overview of modeling
 Relational Model (Chapter 2)
◦ Basics
◦ Keys
◦ Relational operations
◦ Relational algebra (basics)
◦ Relational algebra (advanced)

 SQL (Chapter 3)
◦ Setting up the PostgreSQL database
◦ Data Definition (3.2)
◦ Basics (3.3-3.5)
◦ Null values (3.6)
◦ Aggregates (3.7)

Outline

64

 Overview of modeling
 Relational Model (Chapter 2)
◦ Basics
◦ Keys
◦ Relational operations
◦ Relational algebra basics

 SQL
◦ Basic Data Definition (3.2)
◦ Setting up the PostgreSQL database
◦ Basic Queries (3.3-3.5)
◦ Null values (3.6)
◦ Aggregates (3.7)

Outline

65

History
 IBM Sequel language developed as part of System R project at the

IBM San Jose Research Laboratory
 Renamed Structured Query Language (SQL)
 ANSI and ISO standard SQL:
◦ SQL-86, SQL-89, SQL-92
◦ SQL:1999, SQL:2003, SQL:2008

 Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.
◦ Not all examples here may work on your particular system.

 Several alternative syntaxes to write the same queries

66

Different Types of Constructs
 Data definition language (DDL): Defining/modifying schemas
◦ Integrity constraints: Specifying conditions the data must satisfy
◦ View definition: Defining views over data
◦ Authorization: Who can access what

 Data-manipulation language (DML): Insert/delete/update
tuples, queries

 Transaction control:
 Embedded SQL: Calling SQL from within programming languages
 Creating indexes, Query Optimization control…

67

SQL: Data Definition Language

 The schema for each relation.
 Keys
 The domain of values associated with each attribute.
 Integrity constraints
 Also: other information such as
◦ The set of indices to be maintained for each relations.
◦ Security and authorization information for each relation.
◦ The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

68

 Let K ⊆ R		 	 	 (R is a set of columns)
 K is a superkey of R if values for K are sufficient to identify a

unique row of any possible table
◦ Example: {ID} and {ID,name} are both superkeys of instructor.

 Superkey K is a candidate key if K is minimal (i.e., no subset
of it is a superkey)
◦ Example: {ID} is a candidate key for Instructor

 One candidate key can be the primary key for a table
◦ Typically one that is small and immutable (doesn’t change often)
◦ Chosen by app/user

 Keys are unique!

Keys (more later)

69

Tables in a University Database
classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)
section(course_id, sec_id, semester, year, building,
	 	 	 	 	 room_number, time_slot_id)
teaches(ID, course_id, sec_id, semester, year)
student(ID, name, dept_name, tot_cred)
takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i_ID)
time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

70

 CREATE TABLE <name> (<field> <domain>, …)

	

SQL Constructs: Data Definition Language

create table instructor (
ID char(5), 
name varchar(20) not null, 
dept_name varchar(20), 
salary numeric(8,2),

 primary key (ID), 
foreign key (dept_name) references department

)

create table department (
 dept_name varchar(20),
 building varchar(15),
 budget numeric(12,2) check (budget > 0),

 primary key (dept_name)
);

71

 CREATE TABLE <name> (<field> <domain>, …)

	

SQL Constructs: Data Definition Language

create table instructor (
ID char(5), 
name varchar(20) not null, 
dept_name varchar(20), 
salary numeric(8,2),

 primary key (ID),
foreign key (dept_name) references department

)

create table department
 dept_name varchar(20),
 building varchar(15),
 budget numeric(12,2) check (budget > 0),

 primary key (dept_name)
);

unique

Might not be a key, but must be unique!

Maybe not unique!
72

 drop table student
 delete from student
◦ Keeps the empty table around

 alter table
◦ alter table student add address varchar(50);
◦ alter table student drop tot_cred;

	

SQL Constructs: Data Definition Language

73

 INSERT INTO <name> (<field names>) VALUES (<field values>)
 insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);
 insert into instructor (name, ID) values (‘Smith’, ‘10211’);

-- NULL for other two
 insert into instructor (ID) values (‘10211’);

-- FAIL

 DELETE FROM <name> WHERE <condition>:
	 delete from department where budget < 80000;

◦ Syntax is fine, but this command may be rejected because of
referential integrity constraints (possibly foreign keys).

SQL Constructs: DML

74

 DELETE FROM <name> WHERE <condition>
	 	 delete from department where budget < 80000;

SQL Constructs: Insert/Delete/Update Tuples

2.2 Database Schema 43

dept name building budget
Biology Watson 90000
Comp. Sci. Tay lor 100000
Elec. Eng. Tay lor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although i t is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where i t is clear whether wemean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about al l the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continuewith our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester.Weneed a relation to describeeach individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

50 Chapter 2 Introduction to the Relational Model

ID name salary dept name building budget
10101 Srinivasan 65000 Comp. Sci. Tay lor 100000
12121 Wu 90000 Finance Painter 120000
15151 Mozart 40000 Music Packard 80000
22222 Einstein 95000 Physics Watson 70000
32343 El Said 60000 History Painter 50000
33456 Gold 87000 Physics Watson 70000
45565 Katz 75000 Comp. Sci. Tay lor 100000
58583 Califieri 62000 History Painter 50000
76543 Singh 80000 Finance Painter 120000
76766 Crick 72000 Biology Watson 90000
83821 Brandt 92000 Comp. Sci. Tay lor 100000
98345 Kim 80000 Elec. Eng. Tay lor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

of their dept name attributes are the same. A l l such matching pairs of tuples are
present in the join result. In general, the natural join operation on two relations
matches tuples whose values arethe same on all attribute names that arecommon
to both relations.

TheCartesian product operation combines tuples f rom two relations, but unlike
the join operation, its result contains all pairs of tuples from the two relations,
regardless of whether their attribute valuesmatch.

Because relationsaresets, wecan perform normal set operationson relations.
The union operation performs a set union of two “similarly structured” tables
(say a table of all graduate students and a table of all undergraduate students).
For example, one can obtain the set of al l students in a department. Other set
operations, such as intersection and set difference can be performed aswell.

As we noted earlier, we can perform operations on the results of queries. For
example, if wewant to find the ID and salary for those instructors who havesalary
greater than $85,000, we would perform the first two operations in our example
above. First we select those tuples from the instructor relation where the salary
value is greater than $85,000 and then, f rom that result, select the two attributes
ID and salary, resulting in the relation shown in Figure 2.13 consisting of the ID

ID salary
12121 90000
22222 95000
33456 87000
83821 92000

Figure 2.13 Result of selecting attributes ID and salary of instructors with salary greater
than $85,000.

Instructor relationWe can choose what happens:
(1) Reject the delete, or
(2) Delete the rows in Instructor (may be a cascade), or
(3) Set the appropriate values in Instructor to NULL

75

 DELETE FROM <name> WHERE <condition>
	 	 	 delete from department where budget < 80000;

SQL Constructs: Insert/Delete/Update Tuples

We can choose what happens:
(1) Reject the delete (nothing), or
(2) Delete the rows in Instructor (on delete cascade), or
(3) Set the appropriate values in Instructor to NULL (on delete set null)

create table instructor
 (ID varchar(5),
 name varchar(20) not null,
 dept_name varchar(20),
 salary numeric(8,2) check (salary > 29000),
 primary key (ID),
 foreign key (dept_name) references department
 on delete set null
);

76

 DELETE FROM <name> WHERE <condition>
◦ Delete all classrooms with capacity below average
	 	 delete from classroom where capacity <
	 	 	 (select avg(capacity) from classroom);
● Problem: as we delete tuples, the average capacity changes

 Solution used in SQL:
● First, compute avg capacity and find all tuples to delete
● Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

SQL Constructs: Insert/Delete/Update Tuples

77

SQL Constructs: Insert/Delete/Update Tuples
 UPDATE <name> SET <field name> = <value> WHERE <condition>
◦ Increase all salaries over $100,000 by 6%, all other receive 5%.
◦ Write two update statements:

◦ The order is important
◦ Can be done better using the case statement

update instructor
set salary = salary ∗ 1.05
where salary ≤ 100000;

update instructor
set salary = salary ∗ 1.06
where salary > 100000;

update instructor
set salary = salary ∗ 1.06
where salary > 100000;

update instructor
set salary = salary ∗ 1.05
where salary ≤ 100000;

X
78

SQL Constructs: Insert/Delete/Update Tuples
 UPDATE <name> SET <field name> = <value> WHERE <condition>
◦ Increase all salaries over $100,000 by 6%, others receive 5%.
◦ Can be done better using the case statement
 UPDATE instructor

 SET salary =
	 	 	 CASE
	 	 	 WHEN salary > 100000
	 	 	 	 THEN salary ∗ 1.06
	 	 	 WHEN salary <= 100000
	 	 	 	 THEN salary ∗ 1.05
	 	 	 END;

79

 drop table student
 delete from student
◦ Keeps the empty table around

 alter table
◦ alter table student add address varchar(50);
◦ alter table student drop tot_cred;

	

Recap: Data Definition Language

80

 CREATE TABLE <name> (<field> <domain>, …)

	

SQL Constructs: Data Definition Language

create table instructor (
ID char(5), 
name varchar(20) not null, 
dept_name varchar(20), 
salary numeric(8,2),

 primary key (ID),
foreign key (dept_name) references department

)

create table department
 dept_name varchar(20),
 building varchar(15),
 budget numeric(12,2) check (budget > 0),

 primary key (dept_name)
);

unique

Might not be a key, but must be unique!

Maybe not unique!
81

Basic Query Structure
select A1, A2, ..., An  
from r1, r2, ..., rm 
where P 

Attributes or expressions

tables (or queries returning tables)

optional predicate

Find the names of all instructors: 
select name  
from instructor

Apply some filters (predicates):
select name  
from instructor
where salary > 80000 and dept_name = ‘Finance’;

Remove duplicates: 
select distinct name  
from instructor

Order the output:
select distinct name  
from instructor
order by name desc

82

Basic Query Constructs

Find the names of all instructors: 
select name  
from instructor

Select all attributes: 
select *  
from instructor Expressions in the select clause:

select name, salary < 100000  
from instructor

A filter with a subquery:
select name  
from instructor
where dept_name in (select dept_name from
 department where budget < 100000);

83

Basic Query Constructs

Find the names of all instructors: 
select name  
from instructor

Renaming tables or output column names: 
select i.name, i.salary * 2 as double_salary  
from instructor i
where i.salary < 80000 and i.name like ‘%g_’;

More complex expressions:
select concat(name, concat(‘, ’, dept_name))
from instructor;

select name  
from instructor
where salary < 100000 or salary >= 100000;

Wouldn’t return the instructor with NULL salary (if any)
84

