
 Overview of modeling 
 Relational Model (Chapter 2) 
◦ Basics  
◦ Keys 
◦ Relational operations 
◦ Relational algebra basics  

 SQL (Chapter 3) 
◦ Basic Data Definition (3.2) 
◦ Basic Queries (3.3-3.5) 
◦ Joins 
◦ Null values (3.6) 
◦ Aggregates (3.7)

Outline

85

Multi-table Queries

Cartesian product: 
select *  
from instructor, department

Use predicates to only select “matching” pairs: 
select *  
from instructor i, department d  
where i.dept_name = d.dept_name;

Almost same (in this case) to using natural join:  
select *  
from instructor natural join department;

Natural join does an equality on common attributes – 
doesn’t work here: 
select * 
from instructor natural join advisor;

Instead can use “on” construct (or where clause as above): 
select * 
from instructor join advisor on (i_id = id);

86



Multi-table Queries
3-Table Query to get a list of instructor-teaches-course information: 

select i.name as instructor_name, c.title as course_name  
from instructor i, course c, teaches 
where i.ID = teaches.ID and c.id = teaches.course_id;

Beware of unintended common names (happens often)  
You may think the following query has the same result as above – it doesn’t  

select name, title 
from instructor natural join course natural join teaches; 

I prefer avoiding “natural joins” for that reason

87

Set operations
Find courses that ran in Fall 2009 or Spring 2010 
(select course_id from section where semester = ‘Fall’ and year = 2009) 
 union 
(select course_id from section where semester = ‘Spring’ and year = 2010); 

In both: 
(select course_id from section where semester = ‘Fall’ and year = 2009) 
 intersect 
(select course_id from section where semester = ‘Spring’ and year = 2010);

In Fall 2009, but not in Spring 2010: 
(select course_id from section where semester = ‘Fall’ and year = 2009) 
 except 
(select course_id from section where semester = ‘Spring’ and year = 2010);

88



Set operations: Duplicates
Union/Intersection/Except eliminate duplicates in the answer (the other SQL 
commands don’t) (e.g., try ‘select dept_name from instructor’). 

Can use “union all” to retain duplicates. 

NOTE: The duplicates are retained in a systematic fashion (for all SQL operations) 

Suppose a tuple occurs m times in r and n times in s, then, it occurs:
• m  + n times in r union all s
• min(m,n) times in r intersect all s
• max(0, m – n) times in r except all s

89

 Overview of modeling 
 Relational Model (Chapter 2) 
◦ Basics  
◦ Keys 
◦ Relational operations 
◦ Relational algebra basics 

 SQL (Chapter 3) 
◦ Basic Data Definition (3.2) 
◦ Basic Queries (3.3-3.5) 
◦ Null values (3.6) 
◦ Aggregates (3.7)

Outline

90



SQL: Nulls
The “dirty little secret” of SQL

(major headache for query optimization)

Can be a value of any attribute
e.g:  branch  =

What does this mean?
(not known)    We don’t know Waltham’s assets 
(inapplicable) Waltham has a special kind of account without assets 
(withheld)     We are not allowed to know 

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

91

SQL: Nulls
Arithmetic Operations with NULL

n + NULL = NULL   (similarly for all arithmetic ops: +, -, *, /, mod, …)

SELECT bname, assets * 2 as a2 
FROM branch

e.g:  branch  =

=

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

bname a2
Downtown 18M

Perry 3.4M

Mianus .8M

Waltham NULLThough scalar operations w/ null result in 
null, aggregate functions operate differently. 92



SQL: Nulls

=SELECT *  
FROM branch 
WHERE assets IS NULL

bname bcity assets
Waltham Boston NULL

Arithmetic Operations with NULL

n + NULL = NULL   (similarly for all arithmetic ops: +, -, *, /, mod, …)

e.g:  branch  =
bname bcity assets

Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

93

SQL: Nulls

Counter-intuitive: select * from movies  
                            where length >= 120 or length <= 120

Counter-intuitive: NULL * 0 = NULL

94



SQL: Unknown
Boolean Operations with Unknown

Can write: 
 SELECT … 
 FROM … 
 WHERE booleanexp IS UNKNOWN

Intuition:  substitute each of TRUE, FALSE for unknown.  
If get different answers, result is unknown.

n < NULL = UNKNOWN  (similarly for all boolean ops:  >, <=, >=, <>, =, …)

FALSE OR UNKNOWN = UNKNOWN 
TRUE AND UNKNOWN = UNKNOWN

UNKNOWN OR UNKNOWN = UNKNOWN 
UNKNOWN AND UNKNOWN = UNKNOWN 
NOT (UNKNOWN) = UNKNOWN

note that a predicate 
with value unknown is 
not true… 95

 Overview of modeling 
 Relational Model (Chapter 2) 
◦ Basics  
◦ Keys 
◦ Relational operations 
◦ Relational algebra basics 

 SQL (Chapter 3) 
◦ Basic Data Definition (3.2) 
◦ Basic Queries (3.3-3.5) 
◦ Null values (3.6) 
◦ Aggregates (3.7)

Outline

96



Aggregates

Find the average salary of instructors in 
the Computer Science  
select avg(salary) 
from instructor 
where dept_name = ‘Comp. Sci’;

Other common aggregates: 
max, min, sum, count, stdev, … 

select count (distinct ID) 
from teaches 
where semester = ’Spring’ and year = 2010

In a join:
select max(salary)  
from teaches natural join instructor  
where semester = ’Spring’  
and year = 2010;

97

Aggregates
Aggregate result can be used as a scalar. 
Find instructors with max salary: 
select *  
from instructor  
where salary = (select max(salary) from instructor);

The following do not work: 

select *  
from instructor  
where salary = max(salary); 

select name, max(salary) 
from instructor;

98



Aggregates: Group By
Split the tuples into groups, and computer the aggregate for each group 
select dept_name, avg (salary) 
from instructor 
group by dept_name;

99

Aggregates: Group By
Attributes in the select clause must be aggregates, or must appear in the group 
by clause. Following wouldn’t work:

select dept_name, ID, avg (salary) 
from instructor 
group by dept_name;

“having” can be used to select only some of the groups. 

select dept_name, avg (salary) 
from instructor 
group by dept_name
having avg(salary) > 42000;

having used to select from aggregated rows 
where used to select  non-aggregated rows

100



Aggregates and NULLs

branch =

SELECT SUM (assets) =  

FROM branch

NULL is ignored for SUM 

Same for AVG (3.7M), MIN (0.4M), MAX (9M) 

Also for COUNT(assets) -- returns 3 

SUM
11.1 M

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

COUNT
4

But COUNT (*) returns

Though scalar operations w/ null result in null, aggregate functions operate differently.

101

With Clause
• The with clause provides a way of defining a temporary 

table (or “view”) whose definition is available only to the 
query in which the with clause occurs.  

• Find all departments with the maximum budget: 
 
     with max_budget (value) as  
         (select max(budget) from department) 
     select * 
          from department, max_budget 
          where department.budget = max_budget.value;

102



With Clause, cont
  WITH  
       b AS ((SELECT * FROM borders) UNION (SELECT country2,country1…  
       cd AS (SELECT code FROM country WHERE name='Germany'), 
       b1 AS (SELECT DISTINCT b.country1 FROM b,cd WHERE b.country2 = cd.code), 
       b2 AS (SELECT DISTINCT b.country1 FROM b,b1 WHERE (b.country2 = b1.country1)), 
       b3 AS ((select * from b2) minus (select * from b1)) 
  SELECT name FROM b3,country WHERE country.code = b3.country1;

103

String Operations
• SQL includes a string-matching operator for comparisons on character 

strings.  The operator “like” uses patterns that are described using two 
special characters: 

● percent (%).  The % character matches any substring. 
● underscore (_).  The _ character matches any character. 

• Find the names of all instructors whose name includes the substring “dar”. 
  select name 

 from instructor 
 where name like '%dar%'  

• Match the string “100 %” 
	 	 	 like ‘100 \%'  escape  '\'  

• SQL supports a variety of string operations such as 
● concatenation (using “||”) 
● converting from upper to lower case (and vice versa) 
● finding string length, extracting substrings, etc.

104



Ordering the Display of Tuples
• List in alphabetic order the names of all instructors  

     select distinct name 
 from instructor 
 	order by name 

• We may specify desc for descending order or asc for 
ascending order, for each attribute; ascending order is the 
default. 

● Example:  order by name desc 

• Can sort on multiple attributes 
● Example: order by  dept_name, name

105

 “cross join” forms the M x N Cartesian product 
◦ SELECT * FROM T1 CROSS JOIN T2              or 
◦ SELECT * FROM T1,T2	  

 “natural join” joins two tables on common columns 
 “inner join” joins two tables using an “on” or “using” clause  
◦ Can be thought of as a generalized natural join 

 “outer join” (left|right|full) 
◦ Effect is natural join plus rows that did not match, w/ NULL values 
◦ Two variations: 
◦ default requires explicitly naming the matching conditions, like inner 
◦ natural variant allows implicit matching conditions

More on Joins

106



• natural join  
 
SELECT * FROM instructor NATURAL JOIN teaches

ID dept_name

10101 
12121 
15151

Comp. Sci. 
Finance 
Music

course_id
  CS-101 
  FIN-201 
  null

name

Srinivasan 
Wu 
Mozart

• left outer join  
SELECT * FROM instructor i LEFT JOIN teaches t on (i.ID = t.ID) 

• SELECT * FROM instructor LEFT JOIN teaches USING (ID)

(or LEFT JOIN)

ID dept_name course_idname

10101 
12121

Comp. Sci. 
Finance

  CS-101 
  FIN-201

Srinivasan 
Wu

Comp. Sci. 
Finance 
Music

ID dept_name
10101 
12121 
15151

name
Srinivasan 
Wu 
Mozart

ID course_id
10101 
12121 
76766

CS-101 
FIN-201 
BIO-101

107

More on Joins

Outer Join – Example

ID dept_name

10101 
12121 
76766

Comp. Sci. 
Finance 

null

course_id

  CS-101 
  FIN-201 
  BIO-101

name

Srinivasan 
Wu 
null

ID dept_name

10101 
12121 
15151 
76766

Comp. Sci. 
Finance 
Music 
null

course_id

  CS-101 
  FIN-201 

  null 
  BIO-101

name

Srinivasan 
Wu 

Mozart 
null

• full outer join  
SELECT * FROM instructor FULL JOIN teaches using (ID)

• right outer join  
SELECT * FROM instructor RIGHT JOIN teaches using (ID)

Comp. Sci. 
Finance 
Music

ID dept_name
10101 
12121 
15151

name
Srinivasan 
Wu 
Mozart

ID course_id
10101 
12121 
76766

CS-101 
FIN-201 
BIO-101

108



 Left outer join of instructor and department tables

Defining an outer join w/ other operators

109

SELECT i.*, d.* 
FROM instructor i 
INNER JOIN department d 
USING (dept_name) 

UNION 

SELECT i.*, NULL as dept_name, NULL AS building, NULL AS budget 
FROM instructor i 
WHERE i.dept_name NOT IN (SELECT dept_name FROM department); 

  id   |    name    | dept_name  |  salary  | dept_name  | building |  budget 
-------+------------+------------+----------+------------+----------+----------- 
 32343 | El Said    | History    | 60000.00 | History    | Painter  |  50000.00 
 10101 | Srinivasan | Comp. Sci. | 65000.00 | Comp. Sci. | Taylor   | 100000.00 
 33456 | Gold       | Physics    | 87000.00 | Physics    | Watson   |  70000.00 
 15151 | Mozart     | Music      | 40000.00 | Music      | Packard  |  80000.00 
 83821 | Brandt     | Comp. Sci. | 92000.00 | Comp. Sci. | Taylor   | 100000.00 
 76766 | Crick      | Biology    | 72000.00 | Biology    | Watson   |  90000.00 
 58583 | Califieri  | History    | 62000.00 | History    | Painter  |  50000.00 
 98345 | Kim        | Elec. Eng. | 80000.00 | Elec. Eng. | Taylor   |  85000.00 
 45565 | Katz       | Comp. Sci. | 75000.00 | Comp. Sci. | Taylor   | 100000.00 
 12121 | Wu         | Finance    | 90000.00 |            |          | 
 22222 | Einstein   | Physics    | 95000.00 | Physics    | Watson   |  70000.00 
(11 rows)

Joins in PostgreSQL

DROP TABLE instructor; 
DROP TABLE teaches; 
CREATE TABLE instructor (id INTEGER, name VARCHAR(50), dept_name VARCHAR(50)); 
CREATE TABLE teaches (id INTEGER, course_id VARCHAR(50)); 

INSERT INTO instructor VALUES 
(10101, 'Srinivasan', 'Comp. Sci.'), 
(12121, 'Wu', 'Finance'), 
(15151, 'Mozart', 'Music'); 

INSERT INTO teaches VALUES 
(10101, 'CS-101'), 
(12121, 'FIN-201'), 
(76766, 'BIO-101');

SELECT * FROM instructor i cross teaches t;   
SELECT * FROM instructor i cross join teaches t;   
SELECT * FROM instructor i natural join teaches t;   

SELECT * FROM instructor LEFT JOIN teaches USING (id);   
SELECT * FROM instructor i LEFT JOIN teaches t on (i.id=t.id);   

SELECT * FROM instructor i RIGHT JOIN teaches t USING (id);   

SELECT * FROM instructor i FULL JOIN teaches t USING (id);   

SELECT * FROM instructor NATURAL LEFT JOIN teaches USING (id);   

110



Nested Subqueries
• SQL provides a mechanism for the nesting of subqueries. 
• A subquery is a select-from-where expression that is 

nested within another query. 
• A common use of subqueries is to perform tests for set 

membership, set comparisons, and set cardinality.

111

Example Query
• Find courses offered in Fall 2009 and in Spring 2010

• Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id 
from section 
where semester = ’Fall’ and year= 2009 and  
           course_id in (select course_id 
                                 from section 
                                 where semester = ’Spring’ and year= 2010);

select distinct course_id 
from section 
where semester = ’Fall’ and year= 2009 and  
           course_id  not in (select course_id 
                                 from section 
                                 where semester = ’Spring’ and year= 2010);

Already did w/ set operations

112



Example Query
• Find the total number of (distinct) students who have taken 

course sections taught by the instructor with ID 3199

select count (distinct ID) 
from takes 
where (course_id, sec_id, semester, year) in  
                                (select course_id, sec_id, semester, year 
                                 from teaches 
                                 where teaches.ID= ‘3199’);

  Note: Above query could also be written more efficiently with a join.  The  
           formulation above is simply to illustrate SQL features.

SELECT COUNT(DISTINCT a.ID)  
FROM takes a INNER JOIN teaches b  
ON b.id='3199’  
   AND a.course_id=b.course_id  
   AND a.semester=b.semester  
   AND a.year=b.year  
   AND a.sec_id=b.sec_id;

113

Definition of  Some Clause
• F <comp> some r ⇔ ∃ t ∈ r  such that (F <comp> t ) 

Where <comp> can be:  <,  >=,  >,  =,  !=,  <>

0
5
6

(5 < some

0
5

0

) = false

5

0
5(5 != some ) = true (the 0)

) = true (read:  5 < some tuple in the relation) 

(5 < some

) = true(5 = some

(= some) ≡ in 
However, (!= some) is not the same as not in

114



Set Comparison
• Find names of instructors with salary greater than that of 

some (at least one) instructor in the Biology department.

  Same query using > some clause

select name 
from instructor 
where salary > some (select salary 
     from instructor 
     where dept name = ’Biology’);

select distinct T.name 
from instructor T, instructor S 
where T.salary > S.salary and S.dept name = ’Biology’;

115


