Outline

» Overview of modeling
» Relational Model (Chapter 2)
o Basics
o Keys
o Relational operations
o Relational algebra basics
» SQL (Chapter 3)
o Basic Data Definition (3.2)
> Basic Queries (3.3-3.5)
> Joins
> Null values (3.6)
> Aggregates (3.7)
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Multi-table Queries

Use predicates to only select “matching” pairs:
select *
from instructor i, department d

/ where i.dept_name = d.dept_name;

Cartesian product: Almost same (in this case) to using natural join:
from instructor, department from instructor natural join department;

\Natural join does an equality on common attributes —
doesn’t work here:
select *
from instructor natural join advisor;

Instead can use “on” construct (or where clause as above):
select *
from instructor join advisor on (i_id = id);
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: : teaches(id, course_id, sec_id, semester, year)
M U |t|_ta b | e Q U e r | eS instructor(id, name, dept_name, salary)

course( id, title, dept_name, credits)

3-Table Query to get a list of instructor-teaches-course information:
select i.name as instructor_name, c.title as course_name

from instructor i, course ¢, teaches
where i.ID = teaches.ID and c.id = teaches.course_id;

Beware of unintended common names (happens often)
You may think the following query has the same result as above — it doesn’t

select name, title
from instructor natural join course natural join feaches;

| prefer avoiding “natural joins” for that reason
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Set operations

Find courses that ran in Fall 2009 or Spring 2010

(select course_id from section where semester = ‘Fall’ and year = 2009)
union
(select course_id from section where semester = ‘Spring’ and year = 2010);

In both:

(select course_id from section where semester = ‘Fall’ and year = 2009)
intersect
(select course_id from section where semester = ‘Spring’ and year = 2010);

In Fall 2009, but not in Spring 2010:

(select course_id from section where semester = ‘Fall’ and year = 2009)
except
(select course_id from section where semester = ‘Spring’ and year = 2010);
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Set operations: Duplicates

Union/Intersection/Except eliminate duplicates in the answer (the other SQL
commands don't) (e.g., try ‘select dept_name from instructor’).

Can use “union all” to retain duplicates.
NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs mtimes in rand ntimes in s, then, it occurs:
m + ntimesin runion all s
min(m,n) times in rintersect all s
max(0, m —n) times in rexcept all s
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Outline

o

Null values (3.6)
Aggregates (3.7)

(e]
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SQL: Nulls

The “dirty little secret” of SQL

(major headache for query optimization)

Can be a value of any attribute

e.g: branch = bname beity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL

What does this mean?

(not known) We don’t know Waltham’s assets
(inapplicable) Waltham has a special kind of account without assets

(withheld)

We are not allowed to know
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SQL: Nulls

Arithmetic Operations with NULL

Though scalar operations w/ null result in
null, aggregate functions operate differently.

*, /, mod, ..

n + NULL = NULL (similarly for all grithmetic ops: +, -, *,
e.g: branch =
bname bceity assets
Downtown Boston 9M
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL
bname a2
SELECT bname, assets * 2 as a2
= Downtown 18M
FROM branch
Perry 3.4M
Mianus .8M
Waltham NULL
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SQL: Nulls

Arithmetic Operations with NULL

n + NULL = NULL (similarly for all grithmetic ops: +, -, *, /, mod,
e.g: branch =
bname bceity assets
Downtown Boston 9M
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL
SELECT * _ bname bcity assets
FROM branch Waltham Boston NULL

WHERE assets IS NULL
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SQL: Nulls

Counter-intuitive: NULL * 0 = NULL

Counter-intuitive: select * from movies
where length >= 120 or length <= 120
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SQL: Unknown

Boolean Operations with Unknown

n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, ...

Intuition: substitute each of TRUE, FALSE for unknown.

If get different answers, result is unknown.

FALSE OR UNKNOWN
TRUE AND UNKNOWN

UNKNOWN
UNKNOWN

UNKNOWN OR UNKNOWN = UNKNOWN
UNKNOWN AND UNKNOWN = UNKNOWN

NOT (UNKNOWN) = UNKNOWN
Can write:
note that a predicate SELECT ..
with value unknown is FROM ..
not true... WHERE booleanexp IS UNKNOWN s

(e]

Aggregates (3.7)
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Other common aggregates:
Agg regates max, min, sum, count, stdev, ...
select count (distinct /D)
from teaches

/jhere semester = 'Spring’ and year = 2010

Find the average salary of instructors in In a join:
the Computer Science select max(salary)
select avg(salary) E:>from teaches natural join instructor
f instruct i
rom instructor where semester = ’Spring’
where dept_name = ‘Comp. Sci’; and year = 2010;
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Aggregates

Aggregate result can be used as a scalar.

Find instructors with max salary:

select *

from instructor

where salary = (select max(salary) from instructor);

The following do not work:

select *
from instructor
where salary = max(salary);

select name, max (salary)
from instructor;
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Aggregates: Group By

Split the tuples into groups, and compute the aggregate for each group

select dept_name, avg (salary)
from instructor
group by dept_name;

[ ID | name | dept_name | salary |
76766 | Crick Biology | 72000
45565 | Katz Comp. Sci. | 75000

10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 |Wu Finance 90000
76543 | Singh Finance 80000
32343 [ El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 |Einstein Physics 95000

dept_name avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000
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Aggregates: Group By

Attributes in the select clause must be aggregates, or must appear in the group

by clause. Following wouldn’t work:

select dept_name, ID, avg (salary)
from instructor
group by dept_name;

“having” can be used to select only some of the groups.

select dept_name, avg (salary)
from instructor

group by dept_name

having avg(salary) > 42000;

having used to select from aggregated rows
where used to select non-aggregated rows
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Aggregates and NULLs

Though scalar operations w/ null result in null, aggregate functions operate differently.

branch = bname beity assets
Downtown Boston IM
Perry Horseneck 1.7M
Mianus Horseneck A4AM
Waltham Boston NULL
SELECT SUM (assets) = SumMm
FROM branch M1 M

NULL is ignored for SUM

Same for AVG (3.7M), MIN (0.4M), MAX (9M)

But COUNT (*) returns
Also for COUNT (assets) -- returns 3

COUNT
101 4

With Clause

The with clause provides a way of defining a temporary

table (or “view”) whose definition is available only to the
query in which the with clause occurs.

Find all departments with the maximum budget:

with max_budget (value) as

(select max(budget) from department)
select *

from department, max_budget
where department.budget = max_budget.value;
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With Clause, cont

»  WITH

> b AS ((SELECT * FROM borders) UNION (SELECT country2,country1...

> cd AS (SELECT code FROM country WHERE name='Germany'),

> b1 AS (SELECT DISTINCT b.countryl FROM b,cd WHERE b.country2 = cd.code),

> b2 AS (SELECT DISTINCT b.countryl FROM b,b1 WHERE (b.country2 = b1.country1)),
> b3 AS ((select * from b2) minus (select * from b1))

»  SELECT name FROM b3,country WHERE country.code = b3.country1;
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String Operations

SQL includes a string-matching operator for comparisons on character
strings. The operator “like” uses patterns that are described using two
special characters:

percent (%). The % character matches any substring.
underscore (). The _ character matches any character.

Find the names of all instructors whose name includes the substring “dar”.

select name
from instructor

where name like '%dar%'

Match the string “100 %”

like ‘100 \%' escape '\'

SQL supports a variety of string operations such as

concatenation (using “||")
converting from upper to lower case (and vice versa)

finding string length, extracting substrings, etc.
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Ordering the Display of Tuples

List in alphabetic order the names of all instructors
select distinct name
from instructor

order by name

- We may specify desc for descending order or asc for

ascending order, for each attribute; ascending order is the
default.

Example: order by name desc

Can sort on multiple attributes
Example: order by dept name, name
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More on Joins

» “cross join” forms the M x N Cartesian product
> SELECT * FROM T1 CROSS JOIN T2 or
> SELECT * FROM T1,T2

» “natural join” joins two tables on common columns

» “inner join” joins two tables using an “on” or “using” clause
> Can be thought of as a generalized natural join

» “outer join” (left|right|full)
o Effect is natural join plus rows that did not match, w/ NULL values
> Two variations:

o default requires explicitly naming the matching conditions, like inner
o natural variant allows implicit matching conditions
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More on Joins
- natural join

D

name dept_name |

10101
12121
15151

Srinivasan Comp. Sci.
Wu Finance
Mozart Music

D

course |

10101
12121
76766

CS-101
FIN-201
BIO-101

SELECT * FROM instructor NATURAL JOIN teaches

ID name dept_name course_id
10101 Srinivasan | Comp. Sci. CS-101
12121 Wu Finance FIN-201

- left outer join (or LEFT JOIN)

SELECT * FROM instructor i LEFT JOIN teaches t on (i.ID
SELECT * FROM instructor LEFT JOIN teaches USING (ID)
ID name dept_name course_id
10101 Srinivasan | Comp. Sci. CS-101
12121 Wu Finance FIN-201
15151 Mozart Music null

t.ID)
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Outer Join — Example

- right outer join
SELECT * FROM instructor RIGHT JOIN teaches using

D

name dept_name |

10101
12121
15151

Srinivasan Comp. Sci.
Wu Finance
Mozart Music

D

course |

10101
12121
76766

CS-101
FIN-201
BIO-101

| ID | name dept_name course_id
10101 Srinivasan | Comp. Sci. CS-101
12121 Wu Finance FIN-201
76766 null null BIO-101

- full outer join

SELECT * FROM instructor FULL JOIN teaches using

| ID | name dept_name course_id
10101 Srinivasan | Comp. Sci. CS-101
12121 Wu Finance FIN-201
15151 Mozart Music null
76766 null null BIO-101

(ID)

(ID)
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Defining an outer join w/ other operators

» Left outer join of instructor and department tables

SELECT i.*, d.*

FROM instructor i

INNER JOIN department d
USING (dept_name)

UNION

SELECT i.*, NULL as dept_name,
FROM instructor i

NULL AS building, NULL AS budget

WHERE 1i.dept_name NOT IN (SELECT dept name FROM department);

id | name | dept_name
_______ e
32343 | E1 Said | History
10101 | Srinivasan | Comp. Sci.
33456 | Gold | Physics
15151 | Mozart | Music
83821 | Brandt | Comp. Sci.
76766 | Crick | Biology
58583 | Califieri | History
98345 | Kim | Elec. Eng.
45565 | Katz | Comp. Sci.
12121 | Wu | Finance
22222 | Einstein | Physics
(11 rows)

| salary | dept_name | building | budget
me e oo e e e oo o S F S

| 60000.00 | History | Painter | 50000.00
| 65000.00 | Comp. Sci. | Taylor | 100000.00
| 87000.00 | Physics | Watson | 70000.00
| 40000.00 | Music | Packard | 80000.00
| 92000.00 | Comp. Sci. | Taylor | 100000.00
| 72000.00 | Biology | Watson | 90000.00
| 62000.00 | History | Painter | 50000.00
| 80000.00 | Elec. Eng. | Taylor | 85000.00
| 75000.00 | Comp. Sci. | Taylor | 100000.00
| 90000.00 | |

| 95000.00 | Physics | Watson | 70000.00
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Joins in PostgreSQL

T1 CROSS JOIN T2

71 { [INNER] | { LEFT | RIGHT | FULL
71 { [INNER] | { LEFT | RIGHT | FULL
T1 NATURAL { [INNER] | { LEFT | RIGHT

} [OUTER] } JOIN T2 ON boolean_expression
} [OUTER] } JOIN T2 USING ( join column list )
| FULL } [OUTER] } JOIN 72

DROP TABLE instructor;
DROP TABLE teaches;

INSERT INTO instructor VALUES
(10101, 'Srinivasan', 'Comp. Sci."),

CREATE TABLE instructor (id INTEGER, name VARCHAR(50), dept_name VARCHAR(50));
CREATE TABLE teaches (id INTEGER, course_id VARCHAR(50));

(12121, 'Wu', 'Finance'),
(15151, 'Mozart', "Music');

INSERT INTO teaches VALUES
(10101, 'CS-101),
(12121, 'FIN-201Y),
(76766, 'BIO-101');

SELECT * FROM instructor i cross teaches t;
SELECT * FROM instructor i cross join teaches t;
SELECT * FROM instructor i natural join teaches t;

SELECT * FROM instructor LEFT JOIN teaches USING (id);
SELECT * FROM instructor i LEFT JOIN teaches t on (i.id=t.id);

SELECT * FROM instructor i RIGHT JOIN teaches t USING (id);
SELECT * FROM instructor i FULL JOIN teaches t USING (id);

SELECT * FROM instructor NATURAL LEFT JOIN teaches USING (id);
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Nested Subqueries

SQL provides a mechanism for the nesting of subqueries.
- A subquery is a select-from-where expression that is
nested within another query.

- A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

m

Example Query
Find courses offered in Fall 2009 and in Spring 2010

select distinct course_id
from section
where semester = 'Fall’ and year= 2009 and
course_id in (select course_id
from section
where semester = ’'Spring’ and year= 2010);

Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester ='Fall’ and year= 2009 and
course_id not in (select course_id
from section
where semester = 'Spring’ and year= 2010);

Already did w/ set operations
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Example Query

Find the total number of (distinct) students who have taken
course sections taught by the instructor with /1D 3199

select count (distinct /D)

from takes

where (course_id, sec_id, semester, year) in
(select course_id, sec_id, semester, year
from teaches
where teaches.|D= ‘3199’);

Note: Above query could also be written more efficiently with a join. The
formulation above is simply to illustrate SQL features.

SELECT COUNT(DISTINCT a.ID)
FROM takes a INNER JOIN teaches b
ON b.id='3199’
AND a.course_id=b.course_id
AND a.semester=b.semester
AND a.year=b.year
AND a.sec_id=b.sec_id;
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Definition of Some Clause

- F <comp> some r < 3 t € r such that (F <comp> t)
Where <comp> can be: <, >=, >, =, =, <>

0
(5 <some 5 ) = true (read: 5 < some tuple in the relation)
6
0
(5 <some 5 | )=false
0
(5=some 5 ) = true
0
(5 !=some 5 ) = true (the 0)

(= some) = in
However, (!= some) is not the same as not in
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Set Comparison

Find names of instructors with salary greater than that of
some (at least one) instructor in the Biology department.

select distinct T.name
from instructor T, instructor S
where T.salary > S.salary and S.dept name ='Biology’;

Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name ='Biology’);
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