Outline

» Overview of modeling
» Relational Model (Chapter 2)
o Basics
o Keys
o Relational operations
o Relational algebra basics
» SQL (Chapter 3)
o Basic Data Definition (3.2)
> Basic Queries (3.3-3.5)
> Joins
> Null values (3.6)
> Aggregates (3.7)

85

Multi-table Queries

Use predicates to only select “matching” pairs:
select *
from instructor i, department d

/ where i.dept_name = d.dept_name;

Cartesian product: Almost same (in this case) to using natural join:
from instructor, department from instructor natural join department;

\Natural join does an equality on common attributes —
doesn’t work here:
select *
from instructor natural join advisor;

Instead can use “on” construct (or where clause as above):
select *
from instructor join advisor on (i_id = id);

86

: : teaches(id, course_id, sec_id, semester, year)
M U |t|_ta b | e Q U e r | eS instructor(id, name, dept_name, salary)

course(id, title, dept_name, credits)

3-Table Query to get a list of instructor-teaches-course information:
select i.name as instructor_name, c.title as course_name

from instructor i, course ¢, teaches
where i.ID = teaches.ID and c.id = teaches.course_id;

Beware of unintended common names (happens often)
You may think the following query has the same result as above — it doesn’t

select name, title
from instructor natural join course natural join feaches;

| prefer avoiding “natural joins” for that reason

87

Set operations

Find courses that ran in Fall 2009 or Spring 2010

(select course_id from section where semester = ‘Fall’ and year = 2009)
union
(select course_id from section where semester = ‘Spring’ and year = 2010);

In both:

(select course_id from section where semester = ‘Fall’ and year = 2009)
intersect
(select course_id from section where semester = ‘Spring’ and year = 2010);

In Fall 2009, but not in Spring 2010:

(select course_id from section where semester = ‘Fall’ and year = 2009)
except
(select course_id from section where semester = ‘Spring’ and year = 2010);

88

Set operations: Duplicates

Union/Intersection/Except eliminate duplicates in the answer (the other SQL
commands don't) (e.g., try ‘select dept_name from instructor’).

Can use “union all” to retain duplicates.
NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs mtimes in rand ntimes in s, then, it occurs:
m + ntimesin runion all s
min(m,n) times in rintersect all s
max(0, m —n) times in rexcept all s

89

Outline

o

Null values (3.6)
Aggregates (3.7)

(e]

90

SQL: Nulls

The “dirty little secret” of SQL

(major headache for query optimization)

Can be a value of any attribute

e.g: branch = bname beity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL

What does this mean?

(not known) We don’t know Waltham’s assets
(inapplicable) Waltham has a special kind of account without assets

(withheld)

We are not allowed to know

91

SQL: Nulls

Arithmetic Operations with NULL

Though scalar operations w/ null result in
null, aggregate functions operate differently.

*, /, mod, ..

n + NULL = NULL (similarly for all grithmetic ops: +, -, *,
e.g: branch =
bname bceity assets
Downtown Boston 9M
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL
bname a2
SELECT bname, assets * 2 as a2
= Downtown 18M
FROM branch
Perry 3.4M
Mianus .8M
Waltham NULL

92

SQL: Nulls

Arithmetic Operations with NULL

n + NULL = NULL (similarly for all grithmetic ops: +, -, *, /, mod,
e.g: branch =
bname bceity assets
Downtown Boston 9M
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL
SELECT * _ bname bcity assets
FROM branch Waltham Boston NULL

WHERE assets IS NULL

93

SQL: Nulls

Counter-intuitive: NULL * 0 = NULL

Counter-intuitive: select * from movies
where length >= 120 or length <= 120

9

SQL: Unknown

Boolean Operations with Unknown

n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, ...

Intuition: substitute each of TRUE, FALSE for unknown.

If get different answers, result is unknown.

FALSE OR UNKNOWN
TRUE AND UNKNOWN

UNKNOWN
UNKNOWN

UNKNOWN OR UNKNOWN = UNKNOWN
UNKNOWN AND UNKNOWN = UNKNOWN

NOT (UNKNOWN) = UNKNOWN
Can write:
note that a predicate SELECT ..
with value unknown is FROM ..
not true... WHERE booleanexp IS UNKNOWN s

(e]

Aggregates (3.7)

96

Other common aggregates:
Agg regates max, min, sum, count, stdev, ...
select count (distinct /D)
from teaches

/jhere semester = 'Spring’ and year = 2010

Find the average salary of instructors in In a join:
the Computer Science select max(salary)
select avg(salary) E:>from teaches natural join instructor
f instruct i
rom instructor where semester = ’Spring’
where dept_name = ‘Comp. Sci’; and year = 2010;

97

Aggregates

Aggregate result can be used as a scalar.

Find instructors with max salary:

select *

from instructor

where salary = (select max(salary) from instructor);

The following do not work:

select *
from instructor
where salary = max(salary);

select name, max (salary)
from instructor;

98

Aggregates: Group By

Split the tuples into groups, and compute the aggregate for each group

select dept_name, avg (salary)
from instructor
group by dept_name;

[ID | name | dept_name | salary |
76766 | Crick Biology | 72000
45565 | Katz Comp. Sci. | 75000

10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 |Wu Finance 90000
76543 | Singh Finance 80000
32343 [El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 |Einstein Physics 95000

dept_name avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

99

Aggregates: Group By

Attributes in the select clause must be aggregates, or must appear in the group

by clause. Following wouldn’t work:

select dept_name, ID, avg (salary)
from instructor
group by dept_name;

“having” can be used to select only some of the groups.

select dept_name, avg (salary)
from instructor

group by dept_name

having avg(salary) > 42000;

having used to select from aggregated rows
where used to select non-aggregated rows

100

Aggregates and NULLs

Though scalar operations w/ null result in null, aggregate functions operate differently.

branch = bname beity assets
Downtown Boston IM
Perry Horseneck 1.7M
Mianus Horseneck A4AM
Waltham Boston NULL
SELECT SUM (assets) = SumMm
FROM branch M1 M

NULL is ignored for SUM

Same for AVG (3.7M), MIN (0.4M), MAX (9M)

But COUNT (*) returns
Also for COUNT (assets) -- returns 3

COUNT
101 4

With Clause

The with clause provides a way of defining a temporary

table (or “view”) whose definition is available only to the
query in which the with clause occurs.

Find all departments with the maximum budget:

with max_budget (value) as

(select max(budget) from department)
select *

from department, max_budget
where department.budget = max_budget.value;

102

With Clause, cont

» WITH

> b AS ((SELECT * FROM borders) UNION (SELECT country2,country1...

> cd AS (SELECT code FROM country WHERE name='Germany'),

> b1 AS (SELECT DISTINCT b.countryl FROM b,cd WHERE b.country2 = cd.code),

> b2 AS (SELECT DISTINCT b.countryl FROM b,b1 WHERE (b.country2 = b1.country1)),
> b3 AS ((select * from b2) minus (select * from b1))

» SELECT name FROM b3,country WHERE country.code = b3.country1;

103

String Operations

SQL includes a string-matching operator for comparisons on character
strings. The operator “like” uses patterns that are described using two
special characters:

percent (%). The % character matches any substring.
underscore (). The _ character matches any character.

Find the names of all instructors whose name includes the substring “dar”.

select name
from instructor

where name like '%dar%'

Match the string “100 %”

like ‘100 \%' escape '\'

SQL supports a variety of string operations such as

concatenation (using “||")
converting from upper to lower case (and vice versa)

finding string length, extracting substrings, etc.

104

Ordering the Display of Tuples

List in alphabetic order the names of all instructors
select distinct name
from instructor

order by name

- We may specify desc for descending order or asc for

ascending order, for each attribute; ascending order is the
default.

Example: order by name desc

Can sort on multiple attributes
Example: order by dept name, name

105

More on Joins

» “cross join” forms the M x N Cartesian product
> SELECT * FROM T1 CROSS JOIN T2 or
> SELECT * FROM T1,T2

» “natural join” joins two tables on common columns

» “inner join” joins two tables using an “on” or “using” clause
> Can be thought of as a generalized natural join

» “outer join” (left|right|full)
o Effect is natural join plus rows that did not match, w/ NULL values
> Two variations:

o default requires explicitly naming the matching conditions, like inner
o natural variant allows implicit matching conditions

106

More on Joins
- natural join

D

name dept_name |

10101
12121
15151

Srinivasan Comp. Sci.
Wu Finance
Mozart Music

D

course |

10101
12121
76766

CS-101
FIN-201
BIO-101

SELECT * FROM instructor NATURAL JOIN teaches

ID name dept_name course_id
10101 Srinivasan | Comp. Sci. CS-101
12121 Wu Finance FIN-201

- left outer join (or LEFT JOIN)

SELECT * FROM instructor i LEFT JOIN teaches t on (i.ID
SELECT * FROM instructor LEFT JOIN teaches USING (ID)
ID name dept_name course_id
10101 Srinivasan | Comp. Sci. CS-101
12121 Wu Finance FIN-201
15151 Mozart Music null

t.ID)

107

Outer Join — Example

- right outer join
SELECT * FROM instructor RIGHT JOIN teaches using

D

name dept_name |

10101
12121
15151

Srinivasan Comp. Sci.
Wu Finance
Mozart Music

D

course |

10101
12121
76766

CS-101
FIN-201
BIO-101

| ID | name dept_name course_id
10101 Srinivasan | Comp. Sci. CS-101
12121 Wu Finance FIN-201
76766 null null BIO-101

- full outer join

SELECT * FROM instructor FULL JOIN teaches using

| ID | name dept_name course_id
10101 Srinivasan | Comp. Sci. CS-101
12121 Wu Finance FIN-201
15151 Mozart Music null
76766 null null BIO-101

(ID)

(ID)

108

Defining an outer join w/ other operators

» Left outer join of instructor and department tables

SELECT i.*, d.*

FROM instructor i

INNER JOIN department d
USING (dept_name)

UNION

SELECT i.*, NULL as dept_name,
FROM instructor i

NULL AS building, NULL AS budget

WHERE 1i.dept_name NOT IN (SELECT dept name FROM department);

id | name | dept_name
_______ e
32343 | E1 Said | History
10101 | Srinivasan | Comp. Sci.
33456 | Gold | Physics
15151 | Mozart | Music
83821 | Brandt | Comp. Sci.
76766 | Crick | Biology
58583 | Califieri | History
98345 | Kim | Elec. Eng.
45565 | Katz | Comp. Sci.
12121 | Wu | Finance
22222 | Einstein | Physics
(11 rows)

| salary | dept_name | building | budget
me e oo e e e oo o S F S

| 60000.00 | History | Painter | 50000.00
| 65000.00 | Comp. Sci. | Taylor | 100000.00
| 87000.00 | Physics | Watson | 70000.00
| 40000.00 | Music | Packard | 80000.00
| 92000.00 | Comp. Sci. | Taylor | 100000.00
| 72000.00 | Biology | Watson | 90000.00
| 62000.00 | History | Painter | 50000.00
| 80000.00 | Elec. Eng. | Taylor | 85000.00
| 75000.00 | Comp. Sci. | Taylor | 100000.00
| 90000.00 | |

| 95000.00 | Physics | Watson | 70000.00

109

Joins in PostgreSQL

T1 CROSS JOIN T2

71 { [INNER] | { LEFT | RIGHT | FULL
71 { [INNER] | { LEFT | RIGHT | FULL
T1 NATURAL { [INNER] | { LEFT | RIGHT

} [OUTER] } JOIN T2 ON boolean_expression
} [OUTER] } JOIN T2 USING (join column list)
| FULL } [OUTER] } JOIN 72

DROP TABLE instructor;
DROP TABLE teaches;

INSERT INTO instructor VALUES
(10101, 'Srinivasan', 'Comp. Sci."),

CREATE TABLE instructor (id INTEGER, name VARCHAR(50), dept_name VARCHAR(50));
CREATE TABLE teaches (id INTEGER, course_id VARCHAR(50));

(12121, 'Wu', 'Finance'),
(15151, 'Mozart', "Music');

INSERT INTO teaches VALUES
(10101, 'CS-101),
(12121, 'FIN-201Y),
(76766, 'BIO-101');

SELECT * FROM instructor i cross teaches t;
SELECT * FROM instructor i cross join teaches t;
SELECT * FROM instructor i natural join teaches t;

SELECT * FROM instructor LEFT JOIN teaches USING (id);
SELECT * FROM instructor i LEFT JOIN teaches t on (i.id=t.id);

SELECT * FROM instructor i RIGHT JOIN teaches t USING (id);
SELECT * FROM instructor i FULL JOIN teaches t USING (id);

SELECT * FROM instructor NATURAL LEFT JOIN teaches USING (id);

110

Nested Subqueries

SQL provides a mechanism for the nesting of subqueries.
- A subquery is a select-from-where expression that is
nested within another query.

- A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

m

Example Query
Find courses offered in Fall 2009 and in Spring 2010

select distinct course_id
from section
where semester = 'Fall’ and year= 2009 and
course_id in (select course_id
from section
where semester = ’'Spring’ and year= 2010);

Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester ='Fall’ and year= 2009 and
course_id not in (select course_id
from section
where semester = 'Spring’ and year= 2010);

Already did w/ set operations

112

Example Query

Find the total number of (distinct) students who have taken
course sections taught by the instructor with /1D 3199

select count (distinct /D)

from takes

where (course_id, sec_id, semester, year) in
(select course_id, sec_id, semester, year
from teaches
where teaches.|D= ‘3199’);

Note: Above query could also be written more efficiently with a join. The
formulation above is simply to illustrate SQL features.

SELECT COUNT(DISTINCT a.ID)
FROM takes a INNER JOIN teaches b
ON b.id='3199’
AND a.course_id=b.course_id
AND a.semester=b.semester
AND a.year=b.year
AND a.sec_id=b.sec_id;

113

Definition of Some Clause

- F <comp> some r < 3 t € r such that (F <comp> t)
Where <comp> can be: <, >=, >, =, =, <>

0
(5 <some 5) = true (read: 5 < some tuple in the relation)
6
0
(5 <some 5 |)=false
0
(5=some 5) = true
0
(5 !=some 5) = true (the 0)

(= some) = in
However, (!= some) is not the same as not in

114

Set Comparison

Find names of instructors with salary greater than that of
some (at least one) instructor in the Biology department.

select distinct T.name
from instructor T, instructor S
where T.salary > S.salary and S.dept name ='Biology’;

Same query using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name ='Biology’);

115

