Outline

» Overview of modeling
» Relational Model (Chapter 2)
Basics
Keys
Relational operations
Relational algebra basics
» SQL (Chapter 3)
o Basic Data Definition (3.2)
o Basic Queries (3.3-3.5)
o Joins
o Null values (3.06)
o Aggregates (3.7)
> Other

o

[e]

o

[e]

Definition of all clause

F<comp>allre Vter (F<comp> t)

(5<all 5) = false

(5<all |10) = true

(5=all 5) = false

(5!=all [g) = true (since 5 ne 4 and 5 ne 6)

Example Query

- Find the names of all instructors whose salary is greater
than the salary of all instructors in the Biology
department.

select name
from instructor
where salary > all (select salary
from instructor
where dept name ='Biology’);

Test for Empty Relations

- The exists construct returns the value true if the argument
subqguery is nonempty.
- exists re r=d

- notexistsr< r=¢

Correlated Subqgueries

Yet another way of specifying the query “Find all courses taught in both
the Fall 2009 semester and in the Spring 2010 semester”

select course_id
from section F
where semester = 'Fall’ and year= 2009 and
exists (select *
from section S
where semester ='Spring’ and year= 2010
and F.course_id = S.course_id);

Correlation name or correlation variable

120

Not Exists

- Find all students who have taken all courses offered in the
Biology department.

select distinct S./D, S.name
from student S
where not exists ((select course_id
from course
where dept_name ='Biology’)
except
(select T.course_id
from takes T
where S.ID = T.ID));

Notethat X— Y=0 means XCY

121

Test for Absence of Duplicate Tuples

»Find all courses that were offered exactly once in 2009:

WRONG: unique is used to define constraints at table creation.

select T.course_id
from course T

where unique (select R.course_id

from section R
where T.course_id= R.course_id
and R.year = 2009);

RIGHT:

select T.course_id from course T
where 1 = (select count(R.course_id)
from section R
where T.course_id= R.course_id and R.year = 2009);

122

Derived Relations
Subqueries can even be used in the from clause

Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.”
select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary
from instructor
group by dept _name)

where avg_salary > 42000;

- Note that the following is equivalent:
select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
having avg(salary) > 42000;

123

Views

Might not want all users to see the entire logical model (that is, all the
actual relations stored in the database.)

A person who needs to know an instructor’s name and department
might not need to know the salary. This person should see a relation
described, in SQL, by

select /D, name, dept_name
from instructor

A view provides a mechanism to hide certain data from the view of
certain users.

Any relation that is not of the conceptual model but is made visible to a
user as a “virtual relation” is called a view.

124

View Definition

A view is defined using the create view statement which has the
form:

create view v as <query expression>

where <query expression> is any legal SQL expression. The view
name is represented by v.

Once a view is defined, the view name can be used to refer to the
virtual relation that the view generates.

View definition is not the same as creating a new relation by
evaluating the query expression
Rather, a view definition causes the saving of an expression; the expression is
substituted into queries using the view.

125

Example Views

A view of instructors without their salary
create view faculty as

select /D, name, dept_name
from instructor

Find all instructors in the Biology department
select name
from faculty

where dept_name = ‘Biology’
Create a view of department salary totals
create view departments_total _salary(dept _name, total_salary) as
select dept_name, sum (salary)
from instructor
group by dept _name;

126

Views Defined Using Other Views

create view physics_fall_2009 as
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = 'Physics’
and section.semester = 'Fall’
and section.year = '2009’;

create view physics_fall_2009_watson as
select course_id, room_number
from physics_fall_2009
where building= "Watson’;

127

Views Defined Using Other Views

create view physics_fall_2009 watson as
select course_id, room_number
from physics_fall_2009
where building="Watson’;

- Effect is the following:

create view physics_fall_ 2009_watson as
(select course_id, room_number
from (select course.course_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = 'Physics’
and section.semester = "Fall’
and section.year =’'2009’)
where building="Watson’;

128

View Expansion

A view may be used to define another view:

A view relation v, is said to depend directly on a view
relation v, if v, is used in the expression defining v,

A view relation v, is said to depend on view relation v, if

either v, depends directly to v, or there is a path of
dependencies from v, to v,

A view relation v is said to be recursive if it depends on
itself.

129

View Expansion

- A way to interpret queries w/ views...

* Let view v, be defined by an expression e, that may itself contain
uses of view relations.

- View expansion of an expression e repeats the following
replacement step:

repeat
Find any view relation v, in e
Replace the view relation v, by expression e,

until no more view relations are present in e

* As long as the view definitions are not recursive, this loop will
terminate.

Update of (through) a View

- Add a new tuple to faculty view which we defined earlier
insert into faculty values ('30765’, 'Green’, 'Music’);
This insertion must be represented by the insertion of

the tuple:
('380765’, 'Green’, "Music’, null) < salary

iNnto the instructor relation.

Some Updates Do Not Translate Uniquely

create view instructor_info as
select /D, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

insert into instructor info values ('69987’, "White’, ‘'Taylor’);

- which department, if multiple departments in Taylor?
- what if no department is in Taylor?

Most SQL implementations allow updates only on simple views
The from clause has only one database relation.

The select clause contains only attribute names of the relation, and does
not have any expressions, aggregates, or distinct specification.

Any attribute not listed in the select clause can be set to null

The query does not have a group by or having clause.

132

And Some Not at All

create view history_instructors as
select *
from instructor
where dept_name="History’;

Insert (25566, 'Brown’, 'Biology’, 100000) into
history_instructors

133

Summary

>

o]

Advanced operators

134

Integrity Constraints

» Predicates on the database

» Must always be true (checked whenever db gets
updated)

» There are 4 types of IC’s:
Key constraints (1 table)
e.g., 2 accts can’t share the same acct_no

Attribute constraints (1 table)
e.g., accts must have nonnegative balance

Referential Integrity constraints (2 tables)
E.g. bnames associated w/ loans must exist

Global Constraints (n tables)

E.g., all loans must be carried by at least 1 customer with a
savings acct

(o}

[e]

[e]

(o]

135

Key Constraints

|dea: specifies that a relation is a set, not a bag

1. Primary Key:

CREATE TABLE branch(
bname CHAR(15) PRIMARY KEY,
bcity CHAR(20),
assets INT);

or

CREATE TABLE depositor(
cname CHAR(15),
acct_no CHAR(®),
PRIMARY KEY(cname, acct_no));

2. Candidate Keys:
CREATE TABLE customer (
ssn CHAR(9) PRIMARY KEY,
cname CHAR(15),
address CHAR(30),
city CHAR(10),
UNIQUE (cname, address, city));

136

Key Constraints

Effect of SQL Key declarations:
PRIMARY (A1, A2, .., An) or
UNIQUE (A1, A2, ..., An)

Insertions: check for tuples with same values for A1, A2, .., An as
inserted tuple. If found, reject

Updates to any of A1, A2, ..., An: treat as insertion of entire tuple

Primary vs Unique (candidate)
1. 1 primary key per table, several unique keys allowed.
2. Only primary key can be referenced by “foreign key” (ref integrity)
3. DBMS may treat primary key differently
(e.g.: create an index on PK)

137

Attribute Constraints

» |dea:
o Attach constraints to values of attributes
> Enhances types system (e.g.: >= O rather than integer)

1. NOT NULL
e.g.. CREATE TABLE branch(
bname CHAR(15) NOT NULL,

Note: declaring bname as primary key also prevents null values

2. CHECK
e.g.. CREATE TABLE depositor(

balance int NOT NULL,
CHECK(balance >= 0),

affects insertions, updates in affected columns

138

Attribute Constraints

Domains:
associate constraints with DOMAINS rather than attributes

Instead of: CREATE TABLE depositor(

balance INT NOT NULL,
CHECK (balance >= Q)

One can write:

CREATE DOMAIN bank-balance INT (
CONSTRAINT not-overdrawn CHECK (value >= 0),
CONSTRAINT not-null-value CHECK(value NOT NULL));

CREATE TABLE depositor (

balance bank-balance,

)
Advantages?

139

Attribute Constraints

Associating constraints with domains:

1. can avoid repeating specification of same constraint
for multiple columns

2. can name constraints

€.g.: CREATE DOMAIN bank-balance INT (
CONSTRAINT not-overdrawn CHECK (value >= 0),
CONSTRAINT not-null-value CHECK (value NOT NULL));

Advantages:
1. Can add or remove:
ALTER DOMAIN bank-balance
ADD CONSTRAINT capped CHECK(value <= 10000)
2. report better errors (know which constraint violated)

140

