
 Overview of modeling
 Relational Model (Chapter 2)
◦ Basics
◦ Keys
◦ Relational operations
◦ Relational algebra basics

 SQL (Chapter 3)
◦ Basic Data Definition (3.2)
◦ Basic Queries (3.3-3.5)
◦ Joins
◦ Null values (3.6)
◦ Aggregates (3.7)
◦ Other

Outline

116

Definition of all clause
• F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

0
5
6

(5 < all) = false

6
10

4

) = true

5

4
6) = true (since 5 ne 4 and 5 ne 6)

(5 < all

) = false(5 = all

(5 != all

117

Example Query
• Find the names of all instructors whose salary is greater

than the salary of all instructors in the Biology
department.

select name
from instructor
where salary > all (select salary
 from instructor
 where dept name = ’Biology’);

118

Test for Empty Relations
• The exists construct returns the value true if the argument

subquery is nonempty.
• exists r ⇔ r ≠ Ø
• not exists r ⇔ r = Ø

119

Correlated Subqueries
• Yet another way of specifying the query “Find all courses taught in both

the Fall 2009 semester and in the Spring 2010 semester”
 select course_id

 from section F
 where semester = ’Fall’ and year= 2009 and
 exists (select *
 from section S
 where semester = ’Spring’ and year= 2010
 and F.course_id = S.course_id);

• Correlation name or correlation variable

120

Not Exists
• Find all students who have taken all courses offered in the

Biology department.
select distinct S.ID, S.name
from student S
where not exists ((select course_id
 from course
 where dept_name = ’Biology’)
 except
 (select T.course_id
 from takes T
 where S.ID = T.ID));

 Note that X – Y = Ø means X ⊆ Y

121

Test for Absence of Duplicate Tuples
Find all courses that were offered exactly once in 2009:

WRONG: unique is used to define constraints at table creation.
select T.course_id
from course T
where unique (select R.course_id
 from section R
 where T.course_id= R.course_id
 and R.year = 2009);

RIGHT:
select T.course_id from course T
where 1 = (select count(R.course_id)
 from section R
 where T.course_id= R.course_id and R.year = 2009);

122

Derived Relations
• Subqueries can even be used in the from clause
• Find the average instructors’ salaries of those departments

where the average salary is greater than $42,000.”
 select dept_name, avg_salary
 from (select dept_name, avg (salary) as avg_salary

 from instructor
 group by dept_name)

 where avg_salary > 42000;

• Note that the following is equivalent:
select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
having avg(salary) > 42000;

123

Views
• Might not want all users to see the entire logical model (that is, all the

actual relations stored in the database.)
• A person who needs to know an instructor’s name and department

might not need to know the salary. This person should see a relation
described, in SQL, by
	 	
 select ID, name, dept_name
 from instructor

• A view provides a mechanism to hide certain data from the view of
certain users.

• Any relation that is not of the conceptual model but is made visible to a
user as a “virtual relation” is called a view.

124

View Definition
• A view is defined using the create view statement which has the

form:
	 	 create view v as <query expression>
	 where <query expression> is any legal SQL expression. The view

name is represented by v.
• Once a view is defined, the view name can be used to refer to the

virtual relation that the view generates.
• View definition is not the same as creating a new relation by

evaluating the query expression
● Rather, a view definition causes the saving of an expression; the expression is

substituted into queries using the view.

125

Example Views
• A view of instructors without their salary

 create view faculty as
 select ID, name, dept_name
 from instructor

• Find all instructors in the Biology department
 select name
 from faculty
 where dept_name = ‘Biology’

• Create a view of department salary totals
 create view departments_total_salary(dept_name, total_salary) as
 select dept_name, sum (salary)
 from instructor
 group by dept_name;

126

Views Defined Using Other Views
• create view physics_fall_2009 as

 select course.course_id, sec_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = ’Physics’
 and section.semester = ’Fall’
 and section.year = ’2009’;

• create view physics_fall_2009_watson as
 select course_id, room_number
 from physics_fall_2009
 where building= ’Watson’;

127

create view physics_fall_2009_watson as
 select course_id, room_number
 from physics_fall_2009
 where building= ’Watson’;

create view physics_fall_2009_watson as
(select course_id, room_number
 from (select course.course_id, building, room_number
 from course, section
 where course.course_id = section.course_id
 and course.dept_name = ’Physics’
 and section.semester = ’Fall’
 and section.year = ’2009’)
 where building= ’Watson’;

• Effect is the following:

Views Defined Using Other Views

128

A view may be used to define another view:
• A view relation v1 is said to depend directly on a view

relation v2 if v2 is used in the expression defining v1

• A view relation v1 is said to depend on view relation v2 if
either v1 depends directly to v2 or there is a path of
dependencies from v1 to v2

• A view relation v is said to be recursive if it depends on
itself.

View Expansion

129

View Expansion
• A way to interpret queries w/ views…

• Let view vi be defined by an expression ei that may itself contain
uses of view relations.

• View expansion of an expression e repeats the following
replacement step:

		repeat
 Find any view relation vi in e
	 	 Replace the view relation vi by expression ei

	 until no more view relations are present in e

• As long as the view definitions are not recursive, this loop will
terminate.

130

Update of (through) a View
• Add a new tuple to faculty view which we defined earlier
	 	insert into faculty values (’30765’, ’Green’, ’Music’);
	 This insertion must be represented by the insertion of

the tuple:

	 		 (’30765’, ’Green’, ’Music’, null)  salary

	 into the instructor relation.

131

Some Updates Do Not Translate Uniquely
• create view instructor_info as

 select ID, name, building
 from instructor, department
 where instructor.dept_name= department.dept_name;

• insert into instructor info values (’69987’, ’White’, ’Taylor’);
− which department, if multiple departments in Taylor?
− what if no department is in Taylor?

• Most SQL implementations allow updates only on simple views
● The from clause has only one database relation.
● The select clause contains only attribute names of the relation, and does

not have any expressions, aggregates, or distinct specification.
● Any attribute not listed in the select clause can be set to null
● The query does not have a group by or having clause.

132

And Some Not at All
• create view history_instructors as

 select *
 from instructor
 where dept_name= ’History’;

• Insert (’25566’, ’Brown’, ’Biology’, 100000) into
history_instructors

133

 Relational Model (Chapter 2)
◦ Basics
◦ Keys
◦ Relational operations
◦ Relational algebra basics

 SQL (Chapter 3)
◦ Setting up the PostgreSQL database
◦ Data Definition (3.2)
◦ Basics (3.3-3.5)
◦ Null values (3.6)
◦ Aggregates (3.7)
◦ Advanced operators

Summary

134

Integrity Constraints
 Predicates on the database
 Must always be true (checked whenever db gets

updated)

 There are 4 types of IC’s:
◦ Key constraints (1 table)

e.g., 2 accts can’t share the same acct_no
◦ Attribute constraints (1 table)

e.g., accts must have nonnegative balance
◦ Referential Integrity constraints (2 tables)

E.g. bnames associated w/ loans must exist
◦ Global Constraints (n tables)

E.g., all loans must be carried by at least 1 customer with a
savings acct

135

Key Constraints
Idea: specifies that a relation is a set, not a bag
 1. Primary Key:
 CREATE TABLE branch(
 bname CHAR(15) PRIMARY KEY,
 bcity CHAR(20),
 assets INT);
 or
	 	 	 CREATE TABLE depositor(
 cname CHAR(15),
 acct_no CHAR(5),
 PRIMARY KEY(cname, acct_no));

 2. Candidate Keys:
 CREATE TABLE customer (
 ssn CHAR(9) PRIMARY KEY,
 cname CHAR(15),
 address CHAR(30),
 city CHAR(10),
 UNIQUE (cname, address, city));

136

Key Constraints
Effect of SQL Key declarations:
 PRIMARY (A1, A2, .., An) or
 UNIQUE (A1, A2, ..., An)

Insertions: check for tuples with same values for A1, A2, .., An as
 inserted tuple. If found, reject

Updates to any of A1, A2, ..., An: treat as insertion of entire tuple

Primary vs Unique (candidate)
1. 1 primary key per table, several unique keys allowed.
2. Only primary key can be referenced by “foreign key” (ref integrity)
3. DBMS may treat primary key differently
 (e.g.: create an index on PK)

137

Attribute Constraints
 Idea:
◦ Attach constraints to values of attributes
◦ Enhances types system (e.g.: >= 0 rather than integer)

1. NOT NULL
 e.g.: CREATE TABLE branch(
 bname CHAR(15) NOT NULL,

)
Note: declaring bname as primary key also prevents null values

2. CHECK
 e.g.: CREATE TABLE depositor(

 balance int NOT NULL,
 CHECK(balance >= 0),

)

affects insertions, updates in affected columns
138

Attribute Constraints
Domains:

associate constraints with DOMAINS rather than attributes

Instead of: CREATE TABLE depositor(

 balance INT NOT NULL,

 CHECK (balance >= 0)

)

One can write:

 CREATE DOMAIN bank-balance INT (

 CONSTRAINT not-overdrawn CHECK (value >= 0),

 CONSTRAINT not-null-value CHECK(value NOT NULL));

	 CREATE TABLE depositor (

 balance bank-balance,

)

Advantages?

139

Attribute Constraints
Associating constraints with domains:
1. can avoid repeating specification of same constraint
 for multiple columns

2. can name constraints
 e.g.: CREATE DOMAIN bank-balance INT (
 CONSTRAINT not-overdrawn CHECK (value >= 0),
 CONSTRAINT not-null-value CHECK (value NOT NULL));

Advantages:
 1. Can add or remove:
 ALTER DOMAIN bank-balance
 ADD CONSTRAINT capped CHECK(value <= 10000)
 2. report better errors (know which constraint violated)

140

