
 Relational Model (Chapter 2) 
◦ Basics  
◦ Keys 
◦ Relational operations 
◦ Relational algebra basics 

 SQL (Chapter 3) 
◦ Setting up the PostgreSQL database 
◦ Data Definition (3.2) 
◦ Basics (3.3-3.5) 
◦ Null values (3.6) 
◦ Aggregates (3.7) 
◦ Advanced operators

Summary

134

Integrity Constraints
 Predicates on the database  
 Must always be true (checked whenever db gets 

updated) 

 There are 4 types of IC’s: 
◦ Key constraints (1 table) 

e.g., 2 accts can’t share the same acct_no 
◦ Attribute constraints (1 table) 

e.g., accts must have nonnegative balance 
◦ Referential Integrity constraints ( 2 tables) 

E.g. bnames associated w/ loans must exist 
◦ Global Constraints (n tables) 

E.g., all loans must be carried by at least 1 customer with a 
savings acct

135



Key Constraints
Idea: specifies that a relation is a set, not a bag
        1.   Primary Key: 
                                CREATE TABLE branch(  
                                             bname  CHAR(15)  PRIMARY KEY, 
                                             bcity      CHAR(20), 
                                             assets    INT); 
                or 
	 	 	    CREATE TABLE depositor( 
                                              cname   CHAR(15), 
                                              acct_no  CHAR(5), 
                                              PRIMARY KEY(cname, acct_no)); 

        2. Candidate Keys: 
                                CREATE TABLE customer ( 
                                                 ssn     CHAR(9)    PRIMARY KEY, 
                                                 cname  CHAR(15), 
                                                 address CHAR(30), 
                                                 city          CHAR(10), 
                                                 UNIQUE (cname, address, city));

136

Key Constraints
Effect of SQL Key declarations: 
              PRIMARY  (A1, A2, .., An) or 
              UNIQUE (A1, A2, ..., An)

Insertions:  check for tuples with same values for A1, A2, .., An as  
                  inserted tuple. If found, reject 

Updates to any of A1, A2, ..., An:   treat as insertion of entire tuple

Primary vs Unique (candidate) 
1. 1 primary key per table, several unique keys allowed. 
2. Only primary key can be referenced by “foreign key” (ref integrity) 
3. DBMS may treat primary key differently  
                           (e.g.: create an index on PK)

137



Attribute Constraints
 Idea: 
◦ Attach constraints to values of attributes 
◦ Enhances types system (e.g.: >= 0 rather than integer)

1. NOT NULL  
            e.g.:   CREATE TABLE branch( 
                               bname   CHAR(15)  NOT NULL, 
                               .... 
                               ) 
Note: declaring bname as primary key also prevents null values 

2. CHECK  
         e.g.:   CREATE TABLE depositor( 
                                   .... 
                                   balance int NOT NULL, 
                                   CHECK(  balance >= 0), 
                                    .... 
                                    ) 

affects insertions, updates in affected columns 
138

Attribute Constraints
Domains:   

associate constraints with DOMAINS rather than attributes

Instead of:       CREATE TABLE depositor(

                                                   ....

                                                   balance INT NOT NULL,

                                                   CHECK  (balance >= 0)

                            )


One can write: 

                 CREATE DOMAIN  bank-balance INT (

                           CONSTRAINT not-overdrawn CHECK (value >= 0),

                           CONSTRAINT not-null-value CHECK( value NOT NULL));


         

	    CREATE TABLE depositor (

                           .....

                           balance    bank-balance,

                    )

Advantages?

139



Attribute Constraints
Associating constraints with domains:
1.  can avoid repeating specification of same constraint  
       for multiple columns

2. can  name constraints 
    e.g.:  CREATE DOMAIN bank-balance INT ( 
                    CONSTRAINT not-overdrawn CHECK (value >= 0), 
                    CONSTRAINT not-null-value   CHECK (value NOT NULL)); 

Advantages: 
    1. Can add or remove: 
          ALTER DOMAIN bank-balance  
                    ADD CONSTRAINT capped CHECK( value <= 10000) 
    2. report better errors (know which constraint violated) 

140

Referential Integrity Constraints
Idea: prevent “dangling tuples” (e.g.: a loan with a bname, 

Kenmore, when no Kenmore tuple in branch)

Referencing 
Relation 
(e.g. loan)

Referenced 
Relation 
(e.g. branch)

“foreign key” 
   bname primary key 

   bname

Referential Integrity:    
• ensure that local value exists as primary key in other table
• the local value is just a pointer that refers to a value in other table 

(note: don’t need to ensure ,  i.e., not all branches have to have loans)



Referential Integrity Constraints

Referencing 
Relation 
(e.g. loan)

Referenced 
Relation 
(e.g. branch)

bname bname
x

x x

In SQL: 
            CREATE TABLE  branch(  
                     bname   CHAR(15)   PRIMARY KEY 
                     ....) 

             CREATE TABLE loan ( 
                       ......... 
                       FOREIGN KEY bname REFERENCES branch);

Affects: 
    1) Insertions, updates of referencing relation 
    2) Deletions, updates of referenced relation

X

Referential Integrity Constraints
c c

x

x x

A B
what happens when 
we try to delete 
this tuple?

ti

tj

Ans:  3 possibilities 
                     1)  reject  deletion/ update 

                     2)  set    ti [c], tj[c]  = NULL  

                     3)  propagate deletion/update  
                              DELETE:    delete  ti, tj 
                              UPDATE:    set ti[c], tj[c] to updated values 

X



Referential Integrity Constraints
c c

x

x x

A B

what happens when 
we try to delete 
this tuple?

ti

tj

CREATE TABLE A (   ..... 
                   FOREIGN KEY c REFERENCES B  action 
                   .......... )

Action:      1)  left blank  (deletion/update  rejected) 
                   
                 2)  ON DELETE SET NULL/ ON UPDATE SET NULL 
                         sets  ti[c] = NULL, tj[c] = NULL 

                 3)  ON  DELETE CASCADE   
                                deletes ti, tj 
                       ON UPDATE CASCADE 
                           sets ti[c], tj[c] to new key values 

142

Global Constraints
1)  single relation (constraints spans multiple columns) 
◦ E.g.:  CHECK (total = svngs + check)  declared in the CREATE TABLE

SQL examples: 
	 All Bkln branches must have assets > 5M 

               CREATE TABLE branch (  
                               .......... 
                               bcity  CHAR(15), 
                               assets INT, 
                               CHECK (NOT(bcity = ‘Bkln’) OR assets > 5M)) 

Affects:  
              insertions into branch 
              updates of bcity or assets in branch

143



Global Constraints
2)  Multiple relations: every loan has a borrower with a savings account 

  CHECK (NOT EXISTS ( 
                             SELECT   *  
                             FROM loan AS L 
                             WHERE  NOT EXISTS ( 
                                            SELECT   * 
                                            FROM borrower B, depositor D, account A 
                                            WHERE B.cname = D.cname  AND 
                                                           D.acct_no = A.acct_no  AND 
                                                           L.lno  = B.lno)))

Problem: Where to put this constraint?  At depositor? Loan? ....

Checked with EVERY DB update! 
          very expensive.....

Ans: None of the above: 
              CREATE ASSERTION loan-constraint  
                      CHECK(  ..... )

144

Summary: Integrity Constraints
Constraint Type Where declared Affects... Expense

Key Constraints
CREATE TABLE 
(PRIMARY KEY, UNIQUE)

Insertions, Updates Moderate

Attribute 
Constraints

CREATE TABLE
CREATE DOMAIN
(Not NULL, CHECK)

Insertions, Updates Cheap

Referential Integrity

Table Tag
(FOREIGN KEY ....
REFERENCES ....)

1.Insertions into 
referencing rel’n
2. Updates of 
referencing rel’n of 
relevant attrs
3. Deletions  from 
referenced rel’n
4. Update of 
referenced rel’n

1,2: like key constraints. 
Another reason to index/
sort on the primary keys
3,4: depends on
  a. update/delete policy 
chosen
b. existence of indexes on 
foreign key 

Global Constraints

Table Tag (CHECK)
          or
outside table 
(CREATE ASSERTION)

1. For single rel’n 
constraint, with 
insertion, deletion of 
relevant attrs
2. For assesrtions w/ 
every db modification

1. cheap

2. very expensive

145



 SQL (Chapter 3, 4) 
◦ Views (4.2) 
◦ Triggers (5.3) 
◦ Transactions (4.3) 
◦ Integrity Constraints (4.4) 
◦ Functions and Procedures (5.2), Authorization (4.6), Ranking 

(5.5) 
◦ Return to / Finishing the Relational Algebra 
◦ E/R Diagrams

Today’s Plan

146

SQL Functions
 Function to count number of instructors in a department 
             create function dept_count (dept_name varchar(20)) 

     returns integer AS $$ 
   begin 
          declare d_count  integer; 
          select count (* ) into d_count 
          from instructor 
          where instructor.dept_name = dept_name 
          return d_count; 
    end 

         $$ 

 Can use in queries: 
	   select dept_name, budget  

from department  
where dept_count (dept_name ) > 12

147



SQL Procedures
 Same function as a procedure in plpgsql: 
       CREATE PROCEDURE dept_count_proc(IN dept_name VARCHAR(20), OUT d_count INTEGER) 

LANGUAGE plpgsql 
AS $$ 
BEGIN 
    SELECT COUNT(*) INTO d_count 
    FROM instructor 
    WHERE instructor.dept_name = dept_name; 
END; 
$$; 

 But use differently: 
  declare d_count integer; 

 call dept_count_proc( ‘Physics’, d_count); 

HOWEVER: Syntax can be wildly different across different systems 
◦ Was put in place by DBMS systems before standardization 
◦ Hard to change once customers are already using 

148

We Have Recursion in SQL
 Example: find which courses are a prerequisite, whether directly or 

indirectly, for a specific course  

with recursive rec_prereq(course_id, prereq_id) as ( 
        select course_id, prereq_id 
        from prereq 
    union 
        select rec_prereq.course_id, prereq.prereq_id,  
        from rec_prereq, prereq 
        where rec_prereq.prereq_id = prereq.course_id 
    ) 
select ∗ 
from rec_prereq; 

Makes SQL Turing Complete (i.e., you can write any program in SQL)

But: Just because you can, doesn’t mean you should
149



Ranking
 Ranking is done in conjunction with an order by specification.  

 Consider:  student_grades(ID, GPA)  

 Find the rank of each student. 
  select ID, rank() over (order by GPA desc) as s_rank 

       from student_grades  
       order by s_rank 

 Equivalent to:  
 select ID, (1 + (select count(*) 
                         from student_grades B 
                         where B.GPA > A.GPA)) as s_rank 
 from student_grades A 
 order by s_rank;

150

Authorization/Security
 GRANT and REVOKE keywords 
◦ GRANT privilege_type ON object_type object_name TO role_name; 
◦ GRANT SELECT ON TABLE students TO user1; 
◦ GRANT ALL ON TABLE employees TO user2; 
◦ REVOKE SELECT ON TABLE students FROM user1; 

 Can provide select, insert, update, delete privileges 
 Can also create “Roles” and do security at the level of roles 
 Some databases support doing this at the level of individual “tuples” 
◦ MS SQL Server: https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security?

view=sql-server-ver15 
◦ PostgreSQL: https://www.postgresql.org/docs/10/ddl-rowsecurity.html

151



Transactions
 A transaction is a sequence of queries and update statements executed 

as a single unit 
◦ Transactions are started implicitly and terminated by one of 
● commit work: makes all updates of the transaction permanent in the 

database 
● rollback work: undoes all updates performed by the transaction.  

 Motivating example 
◦ Transfer of money from one account to another involves two steps: 
●   deduct from one account and credit to another 

◦ If one steps succeeds and the other fails, database is in an inconsistent state 
◦ Therefore, either both steps should succeed or neither should 

 If any step of a transaction fails, all work done by the transaction can be 
undone by rollback work.   

 Rollback of incomplete transactions is done automatically, in case of 
system failures 

152

Transactions (Cont.)
 In most database systems, each SQL statement that 

executes successfully is automatically committed.   
◦ Each transaction would then consist of only a single 

statement 
◦ Automatic commit can usually be turned off, allowing multi-

statement transactions,  but how to do so depends on the 
database system 
◦ Another option in SQL:1999:  enclose statements within 

     begin atomic 
        …  
     end

153



Triggers
 A trigger is a statement that is executed automatically 

by the system as a side effect of a modification to the 
database.	  

 Suppose that instead of allowing negative account 
balances, the bank deals with overdrafts by  
◦ 1. setting the account balance to zero 
◦ 2. creating a loan in the amount of the overdraft 
◦ 3. giving this loan a loan number identical to the account 

number of the overdrawn account

154

Trigger Example in SQL:1999
create trigger overdraft-trigger after update on account  

referencing new row as nrow                                                                                  
for each row 
when nrow.balance < 0 
begin atomic 
  actions to be taken 

     end  

155



Trigger Example in SQL:1999
create trigger overdraft-trigger after update on account  
referencing new row as nrow                                                                                  
for each row 
when nrow.balance < 0 
begin atomic 
 insert into borrower  
  (select customer-name, account-number 
      from depositor 
    where nrow.account-number = depositor.account-number); 
         insert into loan values 
  (nrow.account-number, nrow.branch-name, nrow.balance); 
         update account set balance = 0 
         where account.account-number = nrow.account-number 
end  

156

Triggers…
 External World Actions 
◦ How does the DB order something if the inventory is low ? 

 Syntax 
◦ Every system has its own syntax 

 Careful with triggers 
◦ Cascading triggers, Infinite Sequences… 

 More Info/Examples: 
◦ https://www.tutorialspoint.com/postgresql/postgresql_triggers.htm 
◦ Google “create trigger postgresql”

157



 Data Retrieval 
◦ How to ask questions of the database 
◦ How to answer those questions 

 Data Models 
◦ Conceptual representation of the data 

 Data Storage 
◦ How/where to store data, how to access it 

 Data Integrity 
◦ Manage crashes, concurrency 
◦ Manage semantic inconsistencies

Context

158


