
Outline
 Relational Algebra (6.1)

 E/R Model (7.2 - 7.4)

 E/R Diagrams (7.5)

 Reduction to Schema (7.6)

 Relational Database Design (7.7)

 Functional Dependencies (8.1 – 8.4)

 Normalization (8.5 – 8.7)

 Relational Query Languages

 SQL Basics

 Formal Semantics of SQL

202

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, name, salary)
 course(course_id, title, credits)
 section(sec_id, course_id, semester, semester, year)
 student(ID, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, {(day, start_time, end_time)}
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(mess)
 prereq(course_id, prereq_id)
 sec_class(course_id, sec_id, semester, year, building,

room_num)

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 203

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, name, salary)
 course(course_id, title, credits)
 section(course_id, sec_id, semester, year)
 student(ID, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(mess)
 prereq(course_id, prereq_id)
 sec_class(course_id, sec_id, semester, year, building, room_num)

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 204

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, name, salary)
 course(course_id, title, credits)
 section(course_id, sec_id, semester, year)
 student(ID, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(course_id, sec_id, semester, year)
 prereq(course_id, prereq_id)
 sec_class(course_id, sec_id, semester, year, building, room_num)

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 205

.

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, name, salary)
 course(course_id, title, credits)
 section(course_id, sec_id, semester, year)
 student(ID, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(course_id, sec_id, semester, year)
 prereq(course_id, prereq_id)
 sec_class(course_id, sec_id, semester, year, building, room_num)

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 206

.

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, dept_name, name, salary)
 course(course_id, title, credits)
 section(course_id, sec_id, semester, year)
 student(ID, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(course_id, sec_id, semester, year)
 prereq(course_id, prereq_id)
 sec_class(course_id, sec_id, semester, year, building, room_num)

.

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 207

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, dept_name, name, salary)
 course(course_id, title, credits)
 section(course_id, sec_id, semester, year)
 student(ID, dept_name, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(course_id, sec_id, semester, year)
 prereq(course_id, prereq_id)
 sec_class(course_id, sec_id, semester, year, building, room_num)

.

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 208

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, dept_name, name, salary)
 course(course_id, title, credits, dept_name)
 section(course_id, sec_id, semester, year)
 student(ID, dept_name, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(course_id, sec_id, semester, year)
 prereq(course_id, prereq_id)
 sec_class(course_id, sec_id, semester, year, building, room_num).

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 209

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, dept_name, name, salary)
 course(course_id, title, credits, dept_name)
 section(course_id, sec_id, semester, year, building, room_num)
 student(ID, dept_name, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(course_id, sec_id, semester, year)
 prereq(course_id, prereq_id)
 sec_class(course_id, sec_id, semester, year, building, room_num)

.

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 210

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

 department(dept_name, building, budget)
 instructor(ID, dept_name, name, salary)
 course(course_id, title, credits, dept_name)
 section(sec_id, course_id, semester, year, building, room_num, slot_id)
 student(ID, dept_name, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 inst_dept(ID, dept_name)
 stud_dept(ID, dept_name)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 course_dept(course_id, dept_name)
 sec_time_slot(course_id, sec_id, semester, year, slot_id)
 sec_course(course_id, sec_id, semester, year)
 prereq(course_id, prereq_id)
 sec_class(building, room_num, capacity, building, room_num)

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 211

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

ER Diagram to Relational Schema
• Schema per entity set

• expand composite attributes
• new schema for multi-valued
• drop derived attributes for now

• Schema per relationship set

- lots of foreign key dependences (weak, relationships..)
- also, we only allow one time slot

 department(dept_name, building, budget)
 instructor(ID, dept_name, name, salary)
 course(course_id, title, credits, dept_name)
 section(sec_id, course_id, semester, year, building, room_num, slot_id)
 student(ID, dept_name, name, tot_cred)
 classroom(building, room_num, capacity)
 time_slot(slot_id, day, start_time, end_time)
 teaches(ID, course_id, sec_id, semester, year)
 takes(ID, course_id, sec_id, semester, year, grade)
 advisor(i_id, s_id)
 prereq(course_id, prereq_id)

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day
start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity 212

Binary Vs. Non-Binary Relationships
• Some relationships that appear to be non-binary may be better represented

using binary relationships
● E.g., A ternary relationship parents, relating a child to his/her father and

mother, is best replaced by two binary relationships, parent1 and parent2
− Using two binary relationships allows partial information (e.g., only

parent1 being known)
● But there are some relationships that are naturally non-binary

− Example: proj_group, with several project members

213

Design Issues
• Binary versus n-ary relationship sets

Although it is possible to replace any nonbinary (n-ary, for n > 2)
relationship set by a number of distinct binary relationship sets, a n-
ary relationship set shows more clearly that several entities
participate in a single relationship.

• Placement of relationship attributes can be tricky

 e.g., attribute date as attribute of advisor or as attribute of student

214

Converting Non-Binary Relationships to Binary Form
• In general, any non-binary relationship can be represented using binary

relationships by creating an artificial entity set.
● Replace R between entity sets A, B and C by an entity set E, and RA, RB,

RC, relating E with A, B, and C
● Create a special identifying attribute for E
● Add any attributes of R to E
● For each relationship (ai, bi, ci) in R

● create a new entity ei in the entity set E
● add (ei, ai) to RA, etc.

B R C

A

CB E

A

RA

RB RC

(a) (b)
215

name
year
len

movies

name
address
birthdate
gender

stars

name
cert#

execs

stud_name
address

studios

in
made by

helmed by

produced by

A Movie Industry Schema

X

Outline
 Relational Algebra (6.1)

 E/R Model (7.2 - 7.4)

 E/R Diagrams (7.5)

 Reduction to Schema (7.6)

 Relational Database Design (7.7)

 Functional Dependencies (8.1 – 8.4)

 Normalization (8.5 – 8.7)

216

A Movie Industry Schema

movies

name
year
len

stars

name
address
birthdate
gender

execs

name
cert#

studios

studname
address

in
made by

helmed by

produced

217

• movies(name, year, len)
• stars(name, addr, gender, birthdate)
• execs(name, cert#)
• studios(stud_name, address)

• in(star_name, movie_name, movie_year)
• made_by(movie_name, movie_year, studioname)
• produced_by(movie_name, movie_year, cert#)
• helmed_by(cert#, stud_name)

Relational Schemas and Redundancy

218

Relational Schemas and Redundancy
• movies(name, year, len)
• stars(name, addr, gender, birthdate)
• execs(name, cert#)
• studios(stud_name, address, pres#)

• in(star_name, movie_name, movie_year)
• made_by(movie_name, movie_year, studioname)
• produced_by(movie_name, movie_year, cert#)

219

Relational Schemas and Redundancy
• movies(name, year, len, prod#)
• stars(name, addr, gender, birthdate)
• execs(name, cert#)
• studios(stud_name, address, pres#)

• in(star_name, movie_name, movie_year)
• made_by(movie_name, movie_year, studioname)

220

Relational Schemas and Redundancy
• movies(name, year, len, prod#, studio_name)
• stars(name, addr, gender, birthdate)
• execs(name, cert#)
• studios(stud_name, address, pres#)

• in(star_name, movie_name, movie_year)

221

Relational Schemas and Redundancy
• movies(name, year, len, prod#, studio_name, star_name)
• stars(name, addr, gender, birthdate)
• execs(name, cert#)
• studios(stud_name, address, pres#)

Is this a good idea???

222

Relational Database Design

or 

“Troubles With Schemas“

223

Title Year Length inColor StudioName prodC# StarName

Star wars 1977 121 Yes Fox 128 Hamill

Star wars 1977 121 Yes Fox 128 Fisher

Star wars 1977 121 Yes Fox 128 H. Ford

King Kong 2005 187 Yes Universal 150 Watts

King Kong 1933 100 no RKO 20 Fay

Issues:

1. Redundancy ➔ higher storage,

2. Inconsistencies (“anomalies”)

 update anomalies, insertion anomalies

3. Need nulls!

 movies w/o actors, pre-productions, etc

Movie(title, year, length, inColor, studioName, producerC#, starName)

225

Issues:

3. Avoid sets

 - Hard to represent

 - Hard to query

Title Year Length inColor StudioName prodC# StarNames

Star wars 1977 121 Yes Fox 128 {Hamill,
Fisher, H.
Ford}

King Kong 2005 187 Yes Universal 150 Watts

King Kong 1933 100 no RKO 20 Fay

226

Movie(title, year, length, inColor, studioName, producerC#, starName)

Name Address

Fox Address1

Studio2 Address1

Universial Address2

This process is also called “decomposition”

Issues:
4. Requires more joins (w/o any obvious benefits)
5. Hard to check for some dependencies
 What if the “address” is actually the presC#’s address ?
 No easy way to ensure that constraint (w/o a join).

Name presC#

Fox 101

Studio2 101

Universial 102

Less Redundancy through Decomposition

227

movieTitle starName

Star Wars Hamill

King Kong Watts

King Kong Faye

Issues:

6. “joining” them back results in more tuples than what we started with

 (King Kong, 1933, Watts) & (King Kong, 2005, Faye)

 This is a “lossy” decomposition

 We lost some constraints/information

 The previous example was a “lossless” decomposition.

Decompose StarsIn(movieTitle, movieYear, starName) into:

 StarsIn1(movieTitle, movieYear)

 StarsIn2(movieTitle, starName) ???

movieTitle movieYear

Star wars 1977

King Kong 1933

King Kong 2005

Are smaller schemas always good ????

228

Desiderata
 No sets
 Correct and faithful to the original design
◦ Avoid lossy decompositions

 As little redundancy as possible
◦ To avoid potential anomalies

 No “inability to represent information”
◦ Nulls shouldn’t be required to store information

 Dependency preservation
◦ Should be possible to check for constraints

Not always possible.
We sometimes relax these for:
 simpler schemas, and fewer joins during queries.

229

Relational Database Design
 Where did we come up with the schema that we used ?
◦ E.g. why not store the actor names with movies ?

 If from an E-R diagram, then:
◦ Did we make the right decisions with the E-R diagram ?

 Goals:
◦ Formal definition of what it means to be a “good” schema.
◦ How to achieve it.

231

Outline
 Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…
◦ Armstrong axioms

 Decompositions
◦ Loss-less decompositions, Dependency-preserving decompositions

 BCNF
◦ How to achieve a BCNF schema

 BCNF may not preserve dependencies
 3NF: Solves the above problem
 BCNF allows for redundancy
 4NF: Solves the above problem

232

Approach
 1. We will encode and list all our knowledge about the schema

• Functional dependencies (FDs)
SSN  name (means: SSN “determines” name)
If two tuples have the same “SSN”, they must have the same “name”

• But:
movietitle  length (Not true)
(movietitle, movieYear, movieDirector)  length (True)

 2. We will define a set of rules that the schema must follow to be “good”
• “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …
• A normal form specifies constraints on the schemas and FDs

 3. If not in a “normal form”, we modify the schema

233

FDs: Example
Course
ID

Course
Name

Dept
Name

Credits Section
ID

Semester Year Building Room
No.

Capacity Time Slot
ID

Functional dependencies:

• course_id  course_name, dept_name, credits
• building, room_num  capacity
• course_id, section_id, semester, year  building, room_num, capacity, slot_id

234

Functional Dependencies
 Let r(R) be a relation schema and
	 	 α ⊆ R and β ⊆ R

 The functional dependency
 α → β

holds on R iff for any legal relations r(R), whenever two tuples t1 and t2 of r
have same values for α, they have same values for β.

 t1[α] = t2 [α] ⇒ t1[β] = t2 [β]

 Example:

 On this instance, A → B does NOT hold, but B → A does hold.

With r(R):
• r is a relation (w/ tuples)
• R is r’s “schema”, i.e. set of attributes

An instance is the value of a r at a
particular point in time.

235

A B

1 4
1 5
3 7

