Outline

»

» Functional Dependencies (8.1 — 8.4)

» Normalization (8.5 — 8.7)

236

Functional Dependencies

» Difference between holding on an instance and holding on all legal relations

Title Year Length |inColor |StudioName prodC# StarName
Star wars 1977 121 Yes Fox 128 Hamill
Star wars 1977 121 Yes Fox 128 Fisher
Star wars 1977 121 Yes Fox 128 H. Ford
King Kong |1933 100 no RKO 20 Fay

»Title > Year

» Is this a true functional dependency ? No.

holds on this instance

Two movies in different years can have the same name.

» Can’t draw conclusions based on a single instance

Need domain knowledge to decide which FDs hold

237

FDs and Redundancy

» Consider a table: R(A, B, C):
« WithFDs: B> C,and A > BC
* So “A”is a Key, but “B” is not

» So: there is a FD whose left hand side is not a key
« Leads to redundancy

Since B is not unique, it may be duplicated cll i ol
Every time B is duplicated, so is C a2 b1 cl

a3 b1 ci

a4 b-2 c—2

Not a problem with A > BC

) a5 b2 c2
A can never be duplicated = e -
a7 b4 ci

Not a duplication > Two different tuples just
happen to have the same value for C

Functional Dependencies

» Functional dependencies and keys:
* A key constraint is a specific form of a FD.
« E.g.if ais a superkey for R, then:

3 a—=2>R
« Similarly for candidate keys and primary keys.

» Deriving FDs
* A set of FDs may imply other FDs
e eg. lfA—>B,andB > C,thenclearlyA > C

+ We will see a formal method for inferring this later

239

Definitions

» 1. Arelation instance r satisfies a set of functional dependencies, F, if the
FDs hold on that relation
» 2. Fholds on a relation schema R if no legal (allowable) relation instance of R
violates it
» 3. Afunctional dependency, o = B, is called trivial if:
o o isasuperset of
o e.g. MovieName, length = length
» 4. Given a set of functional dependencies, F, its closure,
F+ is all the FDs that are implied by FDs in F.

240

Approach

» 1. We will encode and list all our knowledge about the schema
> Functional dependencies (FDs)
> Also:
e Multi-valued dependencies (briefly discuss later)
e Join dependencies etc...

» 2. We will define a set of rules that the schema must follow to be considered
good

> “Normal forms”: 1NF, 2NF, BCNF, 3NF, 4NF, ...
> A normal form specifies constraints on the schemas and FDs
» 3. If not in a “normal form”, we modify the schema

241

BCNF: Boyce-Codd Normal Form

A relation schema Ris “in BCNF” if:

« Every functional dependency o = f3 that holds on it is EITHER:
- 1. Trivial OR

* 2. O is asuperkey of R

Why is BCNF good ?

+ Guarantees no redundancy because of a functional dependency

- Consider a relation r(A, B, C, D) with functional dependency

A->B and two tuples: (al, b1, c1,d1), and (a1, b1, c2, d2)
- bl is repeated because of the functional dependency

+ BUT this relation is not in BCNF
A->B is neither trivial nor is A a superkey for the relation

242

BCNF and Redundancy

3 Why does redundancy arise ?

o GivenaFD, a = B, if a is repeated (— o) has to be repeated
If rule 1 is satisfied, (p — o) is empty, so not a problem.

2. Ifrule 2 is satisfied, then a can’t be repeated, so this doesn’t happen
either

» Hence no redundancy because of FDs in BCNF
e Redundancy may exist because of other types of dependencies
e Higher normal forms used for that (specifically, 4NF)
e Data may naturally have duplicated/redundant data

e We can’t control that unless a FD or some other dependency is
defined

243

Approach

» 1. We will encode and list all our knowledge about the schema:

o]

dependencies etc...

Functional dependencies (FDs); Multi-valued dependencies; Join

» 2. We will define rules the schema must follow to be “good”

]

[e]

“Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, ...
A normal form specifies constraints on the schemas and FDs

» 3. If not in a “normal form”, we modify the schema

o

]

Through lossless decomposition (splitting)
Or direct construction using the dependencies information

244

BCNF

» What if the schema is not in BCNF ?

o Decompose (split) the schema into two pieces.

r(A, B, C, D) with A > B and:
(a1, b1, c1,d1), and (a1, b1, c2, d2)

R, R,
(a1, b1) |[(a1,c1,d1)
(a1, c2,d2)

» From the previous example: split the schema into:

o r1(A, B), r2(A, C, D)

> The first schema is in BCNF, the second one may not be (and may require

further decomposition)

> No repetition now: r1 contains (al, b1), but b1 will not be repeated

» Careful: you want the decomposition to be lossless

o No information should be lost

e The above decomposition is lossless
> We will define this more formally later

245

Normalization

246

BCNF

» Recall that R is in BCNF if every FD, o — 3, is either:

° 1. Trivial, or
° 2. a.is a superkey of R

» No redundancy

» What if the schema is not in BCNF ?
o Decompose (split) the schema into two pieces.

o Careful: you want the decomposition to be lossless

247

Achieving BCNF Schemas

» For all dependencies o — f in F, check if o is a superkey

o (attribute closure)

» If not, then
o Choose a dependency in F+ that breaks the BCNF rules, say a. — f

o Create R, =af Note:
o Create R,=R- (- o). (R-(B-a)==(R-§)

if no extraneous attributions in FDs
- Note that: R, n R, = a and o — af}, so:

We use (R — P) in this course.

. a is a superkey of R,
. lossless decomposition (lossless if intersection of two attribute sets is key for one)

» Repeat for R, and R,

- Define F; to be all dependencies in F+ that contain only attributes in R,

248

Example 1

Achieving BCNF Schemas

R=(A B, C)

F={A—=B, B— C}
Candidate keys = {A}
BCNF? No. B — C violates.

B—-C
R1=(B, C) R2 = (A, B)
F1={B— C} F2={A— B}
Candidate keys = {B} Candidate keys = {A}
BCNF = true BCNF = true

* Dependency-preserving?
* yes

249

R=(A B, C,D,E)

F ={A— B, BC — D} Example 2a
Candidate keys = {ACE}
BCNF = Violated by {A — B, BC — D}
A—B
R1=(A, B) R2=(A,C,D, E)
F1={A— B} F2={}
Candidate keys = {A} Candidate keys = {ACDE}
BCNF = true BCNF = true
* Dependency-preserving?
* no:lost BC— D
R=(A B,C,D,E)
F = {A— B, BC — D} Example 2b
Candidate keys = {ACE}
BCNF = Violated by {A — B, BC — D}
BC —D
R1=(BCD) R2=(A,B, C, E)
F1={BC > D} F2={A— B}
Candidate keys = {BC} Candidate keys = {ACE}
BCNF = true BCNF = false (A — B)
A—B
|
R3 = (A, B) R4 = (A, C, E)
- Dependency-preserving? F3={A—B} F4 ={} [[only trivial]]
. yes Candidate keys = {A} Candidate keys = {ACE}

BCNF = true BCNF = true

251

R=(AB,C,D,E, H)
F={A—BC, E — HA} Example 3
Candidate keys = {DE}

BCNF = Violated by {A — BC} and {E — HA}

A—BC
R1=(A, B, C) R2=(A, D, E, H)
F1={A— BC} F2 ={E — HA}
Candidate keys = {A} Candidate keys = {DE}
BCNF = true BCNF = false (E — HA)

E—-H
»
R3 = (E, H, A) R4 = (ED)
- Dependency-preserving? F3={E > HA} F4 ={} [[only trivial]]
. yes Candidate keys = {E} Candidate keys = {DE}

BCNF = true BCNF = true

252

