
Outline
 Relational Algebra (6.1) 

 E/R Model  (7.2 - 7.4) 

 E/R Diagrams (7.5) 

 Reduction to Schema (7.6) 

 Relational Database Design (7.7) 

 Functional Dependencies (8.1 – 8.4) 

 Normalization (8.5 – 8.7)
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Functional Dependencies
 Difference between holding on an instance and holding on all legal relations 

Title  Year           holds on this instance 
 Is this a true functional dependency ? No. 
•  Two movies in different years can have the same name. 
 Can’t draw conclusions based on a single instance 
•  Need domain knowledge to decide which FDs hold

Title Year Length inColor StudioName prodC# StarName

Star wars 1977 121 Yes Fox 128 Hamill

Star wars 1977 121 Yes Fox 128 Fisher

Star wars 1977 121 Yes Fox 128 H. Ford

King Kong 1933 100 no RKO 20 Fay
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FDs and Redundancy
 Consider a table: R(A, B, C): 

• With FDs:   B  C, and A  BC 
• So “A” is a Key, but “B” is not 

 So: there is a FD whose left hand side is not a key 
• Leads to redundancy

A B C
a1 b1 c1

a2 b1 c1

a3 b1 c1

a4 b2 c2

a5 b2 c2

a6 b3 c3

a7 b4 c1

Since B is not unique, it may be duplicated 
                    Every time B is duplicated, so is C

Not a problem with A  BC 
              A can never be duplicated

Not a duplication  Two different tuples just 
happen to have the same value for C 238

Functional Dependencies
 Functional dependencies and keys: 

• A key constraint is a specific form of a FD. 
• E.g. if α is a superkey for R, then: 

 	 	 	 α  R 
• Similarly for candidate keys and primary keys. 

 Deriving FDs 
• A set of FDs may imply other FDs 
•  e.g. If A  B, and B  C, then clearly A  C 
• We will see a formal method for inferring this later
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Definitions
 1. A relation instance r satisfies a set of functional dependencies, F, if the 

FDs hold on that relation 
 2. F holds on a relation schema R if no legal (allowable) relation instance of R 

violates it 
 3. A functional dependency, α  β, is called trivial if: 
◦ α is a superset of β  
◦ e.g.  MovieName, length  length 

 4. Given a set of functional dependencies, F, its closure,  
     F+, is all the FDs that are implied by FDs in F. 
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Approach
 1. We will encode and list all our knowledge about the schema 
◦ Functional dependencies (FDs) 
◦ Also: 
● Multi-valued dependencies (briefly discuss later) 
● Join dependencies etc… 

 2. We will define a set of rules that the schema must follow to be considered 
good 
◦ “Normal forms”: 1NF, 2NF, BCNF, 3NF, 4NF, … 
◦ A normal form specifies constraints on the schemas and FDs 

 3. If not in a “normal form”, we modify the schema 
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BCNF: Boyce-Codd Normal Form
• A relation schema R is “in BCNF” if: 

• Every functional dependency α  β that holds on it is EITHER: 
• 1. Trivial OR 
• 2. α is a superkey of R 

• Why is BCNF good ? 
• Guarantees no redundancy because of a functional dependency	 	  

• Consider a relation r(A, B, C, D) with functional dependency  
         AB and two tuples: (a1, b1, c1, d1), and (a1, b1, c2, d2) 

• b1 is repeated because of the functional dependency 

• BUT this relation is not in BCNF 
AB is neither trivial nor is A a superkey for the relation
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BCNF and Redundancy
 Why does redundancy arise ? 

◦ Given a FD, α  β, if α is repeated (β – α) has to be repeated  
1. If rule 1 is satisfied, (β – α) is empty, so not a problem. 
2. If rule 2 is satisfied, then α can’t be repeated, so this doesn’t happen 

either 

 Hence no redundancy because of FDs in BCNF 
• Redundancy may exist because of other types of dependencies 
• Higher normal forms used for that (specifically, 4NF) 

• Data may naturally have duplicated/redundant data 
• We can’t control that unless a FD or some other dependency is 

defined
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Approach
 1. We will encode and list all our knowledge about the schema: 
◦ Functional dependencies (FDs); Multi-valued dependencies; Join 

dependencies etc… 
 2. We will define rules the schema must follow to be “good” 
◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, … 
◦ A normal form specifies constraints on the schemas and FDs 

 3. If not in a “normal form”, we modify the schema 
◦ Through lossless decomposition (splitting) 
◦ Or direct construction using the dependencies information

244

BCNF
 What if the schema is not in BCNF ? 
◦ Decompose (split) the schema into two pieces. 

 From the previous example: split the schema into: 
◦ r1(A, B),  r2(A, C, D) 
◦ The first schema is in BCNF, the second one may not be (and may require 

further decomposition) 
◦ No repetition now: r1 contains (a1, b1), but b1 will not be repeated 

 Careful: you want the decomposition to be lossless 
◦ No information should be lost 
● The above decomposition is lossless 
◦ We will define this more formally later

r(A, B, C, D) with A  B and: 
(a1, b1, c1, d1), and (a1, b1, c2, d2)

    R1 

(a1, b1)
    R2 
(a1, c1, d1) 
(a1, c2, d2)
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Normalization
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BCNF
 Recall that R is in BCNF if every FD, α → β, is either: 

◦ 1. Trivial, or 
◦ 2. α is a superkey of R 

 No redundancy  

 What if the schema is not in BCNF ? 
◦ Decompose (split) the schema into two pieces. 

◦ Careful: you want the decomposition to be lossless
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Achieving BCNF Schemas

 For all dependencies α → β in F+, check if α is a superkey 
◦ (attribute closure) 

 If not, then  
◦ Choose a dependency in F+ that breaks the BCNF rules, say α → β 

◦ Create R1 = αβ 

◦ Create R2 = R – (β - α).  
◦ Note that: R1 ∩ R2 = α and α → αβ, so: 

● α is a superkey of R1 
● lossless decomposition (lossless if intersection of two attribute sets is key for one) 

 Repeat for R1, and R2 

◦ Define Fi to be all dependencies in F+ that contain only attributes in Ri

Note: 
   (R – (β - α)) == (R – β )    
if no extraneous attributions in FDs

We use (R – β ) in this course.
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B → C

R = (A, B, C) 
F = {A → B, B → C} 

R1 = (B, C) 
F1 = {B → C} 
Candidate keys = {B} 
BCNF = true

R2 = (A, B) 
F2 = {A → B} 
Candidate keys = {A} 
BCNF = true

BCNF? No. B → C violates.

Achieving BCNF Schemas Example 1
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Candidate keys = {A}

• Dependency-preserving?
• yes



A → B

R = (A, B, C, D, E) 
F = {A → B, BC → D} 

Candidate keys = {ACE} 
BCNF = Violated by {A → B, BC → D}

R1 = (A, B) 
F1 = {A → B} 

Candidate keys = {A} 
BCNF = true

R2 = (A, C, D, E) 
F2 = {} 

Candidate keys = {ACDE} 
BCNF = true

Example 2a
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• Dependency-preserving?
• no: lost BC → D

R3 = (A, B) 
F3 = {A → B} 

Candidate keys = {A} 
BCNF = true

BC → D

R = (A, B, C, D, E) 
F = {A → B, BC → D} 

Candidate keys = {ACE} 
BCNF = Violated by {A → B, BC → D}

R1 = (BCD) 
F1 = {BC  D} 

Candidate keys = {BC} 
BCNF = true

R2 = (A, B, C, E) 
F2 = {A → B} 

Candidate keys = {ACE} 
BCNF = false (A → B)

A → B

R4 = (A, C, E) 
F4 = {}  [[ only trivial ]] 

Candidate keys = {ACE} 
BCNF = true

Example 2b
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• Dependency-preserving?
• yes



A → BC

R = (A, B, C, D, E, H) 
F = {A → BC, E → HA} 
Candidate keys = {DE} 

BCNF = Violated by {A → BC} and {E → HA}

R1 = (A, B, C) 
F1 = {A → BC} 

Candidate keys = {A} 
BCNF = true

R2 = (A, D, E, H) 
F2 = {E → HA} 

Candidate keys = {DE} 
BCNF = false (E → HA)

E → HA

R4 = (ED) 
F4 = {}  [[ only trivial ]] 
Candidate keys = {DE} 

BCNF = true

Example 3

252

• Dependency-preserving?
• yes

R3 = (E, H, A) 
F3 = {E  HA} 

Candidate keys = {E} 
BCNF = true


