Outline

’ Mechanisms and definitions to work with FDs:

° Closures, candidate keys, canonical covers etc...

° Armstrong axioms
’ Decompositions:

° Loss-less decompositions, Dependency-preserving decompositions
’ BCNF:

° How to achieve a BCNF schema

° BCNF may not preserve dependencies

- 3NF: Solves the above problem
» Peewee

’ Mechanisms:
- closures of function dependences
- closures of attributes
- extraneous attributes

- canonical covers

272

Object-Relational Mappings (ORMs)

» Motivation
o SQL is low-level
o mapping SQL operations to objects might be more natural
» Examples
o Django (python)
o Hibernate
o Peewee (python) Why?
e Ease of use: simple python API for defining models and queries
e Lightweight: easy to retrofit on existing schemas
e Flexibility: can use raw SQL if necessary

273

Peewee

» Model definition:
o python classes mapped to database schemas
o each class is a table, each attribute a column
» Query building:
o from peewee import *
o query = User.select().where(User.age > 21)
» Relationships
o foreign keys, complex joins
» Queries:

» Perform a JOIN to get tweets and associated users
query = (Tweet

.select(Tweet, User) # Selecting columns models
.join(User) # Joining with User
.where(User.username == 'john')) # Filtering by username 'john'

» Loop through the results:
for tweet in query:
print(f"{tweet.user.username} tweeted: {tweet.content}")

274

Peewee (assignment 3)

» Turn existing schema into object model:
pwiz.py -e postgresql -u root -P flightsskewed > orm.py

» Define runORM(jsonFile), called by SQLTesting.py and test with:

def runORM(jsonFile):
Customers.delete() .where(Customers.name == 'bob').execute()
Airports.delete().where(Airports.airportid == 'PET').execute()

bob = Customers(name="bob", customerid='custl@l@', birthdate='1960-01-15"
frequentflieron="SW")
bob.save(force_insert=True)

bwi = Airports(airportid='PET', city='Takoma', name='Pete', total2011=2,
total2012=4)
bwi.save(force_insert=True)

for port in Airports.select().order_by(Airports.name):
print (port.name)

275

Peewee notes

» SQLTesting.py includes orm.py automatically, calls runORM:

def runORM(jsonFile):
with open(jsonFile) as f:
for line in f:
j = json.loads(line)
if 'newcustomer' in j:
nc = j['newcustomer']

elif 'flewon' in j:
populateNumFlights ()

def populateNumFlights():
clear table
Numberofflightstaken.delete().execute()

Recreate...

276

Outline

’ Mechanisms and definitions to work with FDs:

° Closures, candidate keys, canonical covers etc...

° Armstrong axioms
’ Decompositions:

° Loss-less decompositions, Dependency-preserving decompositions
’ BCNF:

° How to achieve a BCNF schema

° BCNF may not preserve dependencies

- 3NF: Solves the above problem

’ Back to FDs: mechanisms

closures of function dependences
- closures of attributes
- extraneous attributes

canonical covers

277

1. Closure of Functional Dependencies

» Given a set of functional dependencies, F its closure, F+ is all FDs that are
implied by FDs in F.

> eqg. lfA—>B,and B> C, thenclearly A > C

» We can find F+ by applying Armstrong’s Axioms:
o ifpCa,thena—p (reflexivity)
o iffa—=p,thenya — vp (augmentation)
o ifa—pB,and p —vy, thena — y (transitivity)

» These rules are

> sound (generate only functional dependencies that actually hold)
o complete (generate all functional dependencies that hold)

278

Additional rules (not Armstrong’s axioms)

v

If o = f and o — vy, then o — B v (union)

v

If o — By, then a — P and o — v (decomposition)

v

Ifoa — B and y B — 9, then oy — d (pseudotransitivity)

v

The above rules can be inferred from Armstrong’s axioms.

279

Exam p | e (only Armstrong’s axioms)

» R=(A,B,C G, H,I)
F={ A—B
A—C
CG—H
CG— 1
B — H}
» Some members of F+
-A—=H
- by transitivity from A — Band B— H
- AG — |
- by augmenting A — C with G, to get AG — CG
- and then transitivity with AG — €G — |
- CG —HI
- by augmenting CG — [/ to infer CG — CGl,
- and augmenting of CG — H to infer CGI — HI,
- and then transitivity: CG — CGI — HI

280

2. Closure of an attribute set

» Given a set of attributes o and a set of FDs F, closure of a. under Fis the
set of all attributes implied by «

» In other words, the largest 3 such that: o =
» Redefining super keys:

o The closure of a super key is the entire relation schema
» Redefining candidate keys:

1. Itis a super key

2. No subset of it is a super key

281

Computing the closure for a

» Simple algorithm:
1. Start with = o

2. Go over all functional dependencies, & — v, in F
3. Ifo C B, then

addyto
» 4. Repeat till § stops changing

Example

» R=(A,B CG,H,I
F={ A—B
A—C
CG—H
CG— |
B — H}

» (AG)+?
o 1.p =AG
o 2.p =ABG (A—=Band ACAG)
o 3.p =ABCG (A — Cand A C ABG)
o 4. = ABCGH (CG — H and CG C ABCG)
o 5.8 = ABCGHI (CG — land CG C ABCGH)
o done

G
G

» Is (AG) a candidate key ?
’ It is a super key.

b (A+) = ABCH, (G+) = G.
» YES.

Uses of attribute set closures

» Determining superkeys and candidate keys

» Determining if o = fis a valid FD
> Does a+ contain 3 ?

» Can be used to compute F+

284

3. Extraneous Attributes

Consider F, and a functional dependency, a. = .

» “Extraneous”: Any attributes in oL or 3 that can be safely removed ?

without changing the constraints implied by F
» o ls extraneous in «. iff:

1. oisina, and
e Flogically implies F’

e whereF =(F-{oo—=pB}) U{(aa—0)— B} (ie. show that Fimplies (0. — o) — B)

2. orshow (o - 0)*includes B under F

» o is extraneous in [} if:

1. oisinp, and
e F’logically implies F,
o F=(F-{oa—=p}) Uf{o—(B-o)}

2. or show a* includes o under F’

O is extraneous in o iff:
F—F, or
(o — 0)* includes B under F

o is extraneous in p iff:
F—F or
a*includes o in F’

285

3. Extraneous Attributes

» Example: Given F = {A — C, AB — CD}, show C extra in AB — CD

o F'={A—=C, AB— D} using
o Using Armstrong’s: (show F’ — F)
o We know:
e AB—D (F)
e ABC — CD (aug)
® also:
e A—=C ()
e AB—BC (aug w/ B)
e AB — ABC (aug w/ A)
e then:
e AB—ABC —=CD (trans)
done.

= Or using attribute closures (show a+ includes C under F’):

e We know:
e AB— AB (reflexive)
e AB — ABC (because A — C)

Must prove!

o is extraneous in « iff:
F—F, or
(oo — 0)* includes f under F

o is extraneous in iff:
F'—F, or
a*includes o in F’

286

3. Extraneous Attributes

e Example: Given F={A —BE,B — C, C — D, AC — DE}, using attribute closures

o For left side of AC — DE
e A extraneous?
e does C+include DE under F?
e NO: C+ = CD, NOT include DE
¢ C extraneous?
e does A+ include DE under F?
® YES: A+ = ABCDE
eNowF=A—-=BE,B—C,C—-D,A— DE
e B extraneous in A — BE?
eF'=A—-EB—-C,C—D, A—-DE
e Does A+ include B under F'?
¢ NO: A+ = ADE
e £ extraneous in A — BE?
eF=A—-B,B—-C,C—-D,A—=DE
e Does A+ include E under F'?
¢ YES: A+ = ABCDE
eNowF=A—-B,B—-C,C—-=D,A—DE
¢ D extraneous in right side of A — DE?
eF=A—-BB—-C,C—-D,A—E
e Does A+ include D under F’?
¢ YES: A+ = ABCDE
eNowF=A—-B,B—-C,C—-D,A—E

o is extraneous in « iff:
F—F, or
(o — @)* includes under F

o is extraneous in iff:
F—F or
a*includes ¢ in F’

287

