
Outline

 Mechanisms and definitions to work with FDs:
◦ Closures, candidate keys, canonical covers etc…
◦ Armstrong axioms

 Decompositions:
◦ Loss-less decompositions, Dependency-preserving decompositions

 BCNF:
◦ How to achieve a BCNF schema
◦ BCNF may not preserve dependencies
- 3NF: Solves the above problem

 Peewee
 Mechanisms:

- closures of function dependences
- closures of attributes
- extraneous attributes
- canonical covers

272

 Motivation
◦ SQL is low-level
◦ mapping SQL operations to objects might be more natural

 Examples
◦ Django (python)
◦ Hibernate
◦ Peewee (python) Why?
● Ease of use: simple python API for defining models and queries
● Lightweight: easy to retrofit on existing schemas
● Flexibility: can use raw SQL if necessary

Object-Relational Mappings (ORMs)

273

 Model definition:
◦ python classes mapped to database schemas
◦ each class is a table, each attribute a column

 Query building:
◦ from peewee import *
◦ query = User.select().where(User.age > 21)

 Relationships
◦ foreign keys, complex joins

 Queries:

 Perform a JOIN to get tweets and associated users
query = (Tweet
 .select(Tweet, User) # Selecting columns models
 .join(User) # Joining with User
 .where(User.username == 'john')) # Filtering by username 'john'

 Loop through the results:
for tweet in query:
 print(f"{tweet.user.username} tweeted: {tweet.content}")

Peewee

274

 Turn existing schema into object model:
pwiz.py -e postgresql -u root -P flightsskewed > orm.py

 Define runORM(jsonFile), called by SQLTesting.py and test with:

def runORM(jsonFile):
 Customers.delete().where(Customers.name == 'bob').execute()
 Airports.delete().where(Airports.airportid == 'PET').execute()

 bob = Customers(name="bob", customerid='cust1010', birthdate='1960-01-15',
 frequentflieron='SW')
 bob.save(force_insert=True)

 bwi = Airports(airportid='PET', city='Takoma', name='Pete', total2011=2,
 total2012=4)
 bwi.save(force_insert=True)

 for port in Airports.select().order_by(Airports.name):
 print (port.name)

Peewee (assignment 3)

275

 SQLTesting.py includes orm.py automatically, calls runORM:

def runORM(jsonFile):
 with open(jsonFile) as f:
 for line in f:
 j = json.loads(line)
 if 'newcustomer' in j:
 nc = j['newcustomer']
 ...

 elif 'flewon' in j:
 ...

 populateNumFlights()

def populateNumFlights():
 # clear table
 Numberofflightstaken.delete().execute()

 # Recreate...

Peewee notes

276

Outline

 Mechanisms and definitions to work with FDs:
◦ Closures, candidate keys, canonical covers etc…
◦ Armstrong axioms

 Decompositions:
◦ Loss-less decompositions, Dependency-preserving decompositions

 BCNF:
◦ How to achieve a BCNF schema
◦ BCNF may not preserve dependencies
- 3NF: Solves the above problem

 Peewee
 Back to FDs: mechanisms

- closures of function dependences
- closures of attributes
- extraneous attributes
- canonical covers

277

1. Closure of Functional Dependencies
 Given a set of functional dependencies, F, its closure, F+, is all FDs that are

implied by FDs in F.
◦ e.g. If A B, and B C, then clearly A C

 We can find F+ by applying Armstrong’s Axioms:
◦ if β ⊆ α, then α → β (reflexivity)
◦ if α → β, then γ α → γ β (augmentation)
◦ if α → β, and β → γ, then α → γ (transitivity)

 These rules are
◦ sound (generate only functional dependencies that actually hold)
◦ complete (generate all functional dependencies that hold)

278

Additional rules (not Armstrong’s axioms)

 If α → β and α → γ, then α → β γ (union)

 If α → β γ, then α → β and α → γ (decomposition)

 If α → β and γ β → δ, then α γ → δ (pseudotransitivity)

 The above rules can be inferred from Armstrong’s axioms.

279

Example (only Armstrong’s axioms)

 R = (A, B, C, G, H, I)
F = { A → B
 A → C
 CG → H
 CG → I
 B → H}

 Some members of F+
- A → H
- by transitivity from A → B and B → H
- AG → I
- by augmenting A → C with G, to get AG → CG
- and then transitivity with AG → CG → I
- CG → HI
- by augmenting CG → I to infer CG → CGI,
- and augmenting of CG → H to infer CGI → HI,
- and then transitivity: CG → CGI → HI

280

2. Closure of an attribute set
 Given a set of attributes α and a set of FDs F, closure of α under F is the

set of all attributes implied by α
 In other words, the largest β such that: α β
 Redefining super keys:
◦ The closure of a super key is the entire relation schema

 Redefining candidate keys:
1. It is a super key
2. No subset of it is a super key

281

Computing the closure for α
 Simple algorithm:	

1. Start with β = α.

2. Go over all functional dependencies, δ → γ, in F+
3. If δ ⊆ β, then

	 	 add γ to β
 4. Repeat till β stops changing

282

Example
 R = (A, B, C, G, H, I)

F = { A → B
 A → C
 CG → H
 CG → I
 B → H}

 (AG) + ?

◦ 1. β = AG
◦ 2. β = ABG	 	 	 (A → B and A ⊆ AG)
◦ 3. β = ABCG		 	 (A → C and A ⊆ ABG)
◦ 4. β = ABCGH	 	 (CG → H and CG ⊆ ABCG)
◦ 5. β = ABCGHI	 	 (CG → I and CG ⊆ ABCGH)
◦ done

 Is (AG) a candidate key ?
 	It is a super key.
 	(A+) = ABCH, (G+) = G.
 YES.

283

Uses of attribute set closures
 Determining superkeys and candidate keys

 Determining if α β is a valid FD
◦ Does α+ contain β ?

 Can be used to compute F+

284

3. Extraneous Attributes
Consider F, and a functional dependency, α β.
 “Extraneous”: Any attributes in α or β that can be safely removed ?
 without changing the constraints implied by F
 σ is extraneous in α iff:

1. σ is in α, and
● F logically implies F’
● where F’ = (F – {α → β}) ∪ {(α – σ) → β} (i.e., show that F implies (α – σ) → β)

2. or show (α - σ)+ includes β under F
 σ is extraneous in β if:

1. σ is in β, and
● F’ logically implies F,
● F’ = (F – {α → β}) ∪ {α → (β – σ)}

2. or show α+ includes σ under F’

σ is extraneous in α iff:
 F → F’, or
 (α – σ)+ includes β under F

σ is extraneous in β iff:
 F’ → F, or
 α+ includes σ in F’

285

3. Extraneous Attributes
 Example: Given F = {A → C, AB → CD}, show C extra in AB → CD
◦ F' = {A → C, AB → D}

◦ Using Armstrong’s : (show F’ → F)
● We know:

● AB → D 	(F')
● ABC → CD 	 (aug)

● also:
● A → C 	(F')
● AB → BC 	 (aug w/ B)
● AB → ABC 	 (aug w/ A)

● then:
● AB → ABC → CD 	 (trans)

done.

σ is extraneous in α iff:
 F → F’, or
 (α – σ)+ includes β under F

σ is extraneous in β iff:
 F’ → F, or
 α+ includes σ in F’

286

Must prove!

using

◦ Or using attribute closures (show α+ includes C under F’):
● We know:

● AB → AB 	 (reflexive)
● AB → ABC 	 (because A → C)

3. Extraneous Attributes
• Example: Given F = {A → BE, B → C, C → D, AC → DE}, using attribute closures

• For left side of AC → DE
• A extraneous?

• does C+ include DE under F?
• NO: C+ = CD, NOT include DE

• C extraneous?
• does A+ include DE under F?
• YES: A+ = ABCDE

• Now F = A → BE, B → C, C → D, A → DE
• B extraneous in A → BE?

• F' = A → E, B → C, C → D, A → DE
• Does A+ include B under F’?
• NO: A+ = ADE

• E extraneous in A → BE?
• F' = A → B, B → C, C → D, A → DE
• Does A+ include E under F’?
• YES: A+ = ABCDE

• Now F = A → B, B → C, C → D, A → DE
• D extraneous in right side of A → DE?

• F' = A → B, B → C, C → D, A → E

• Does A+ include D under F’?
• YES: A+ = ABCDE

• Now F = A → B, B → C, C → D, A → E

σ is extraneous in α iff:
 F → F’, or
 (α – σ)+ includes β under F

σ is extraneous in β iff:
 F’ → F, or
 α+ includes σ in F’

287

