Outline

- Mechanisms and definitions to work with FDs:
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions:
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF:
 - How to achieve a BCNF schema
 - BCNF may not preserve dependencies
 - 3NF: Solves the above problem
- Peewee
- Mechanisms:
 - closures of function dependences
 - closures of attributes
 - extraneous attributes
 - canonical covers

272

Object-Relational Mappings (ORMs)

- Motivation
 - SQL is low-level
 - mapping SQL operations to objects might be more natural
- Examples
 - Django (python)
 - Hibernate
 - Peewee (python) Why?
 - Ease of use: simple python API for defining models and queries
 - Lightweight: easy to retrofit on existing schemas
 - Flexibility: can use raw SQL if necessary

Peewee

```
Model definition:
```

- python classes mapped to database schemas
- each class is a table, each attribute a column
- Query building:
 - from peewee import *
 - query = User.select().where(User.age > 21)
- Relationships
 - foreign keys, complex joins
- Queries:

```
Perform a JOIN to get tweets and associated users
```

```
> Loop through the results:
    for tweet in query:
        print(f"{tweet.user.username} tweeted: {tweet.content}")
```

274

Peewee (assignment 3)

- Turn existing schema into object model: pwiz.py -e postgresql -u root -P flightsskewed > orm.py
- Define runORM(jsonFile), called by SQLTesting.py and test with:

Peewee notes

SQLTesting.py includes orm.py automatically, calls runORM:

. . .

populateNumFlights()

```
def populateNumFlights():
    # clear table
    Numberofflightstaken.delete().execute()
```

```
# Recreate...
```

276

Outline

- Mechanisms and definitions to work with FDs:
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions:
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF:
 - How to achieve a BCNF schema
 - BCNF may not preserve dependencies
 - 3NF: Solves the above problem
- Peewee
- Back to FDs: mechanisms
 - closures of function dependences
 - closures of attributes
 - extraneous attributes
 - canonical covers

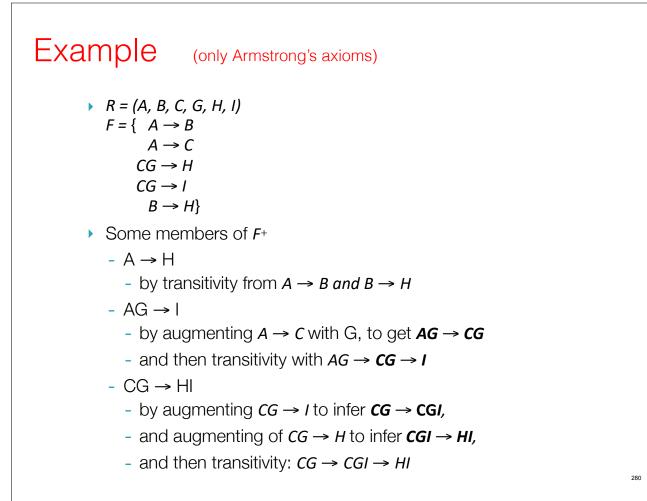
1. Closure of Functional Dependencies

- Given a set of functional dependencies, F, its closure, F⁺, is all FDs that are implied by FDs in F.
 - e.g. If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$
- We can find F+ by applying Armstrong's Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ (reflexivity)
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation)
 - if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ (transitivity)
- These rules are
 - sound (generate only functional dependencies that actually hold)
 - complete (generate all functional dependencies that hold)

278

Additional rules (not Armstrong's axioms)

- If $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$ (union)
- If $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ (decomposition)
- If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)
- The above rules can be inferred from Armstrong's axioms.



2. Closure of an attribute set

- Given a set of attributes α and a set of FDs F, closure of α under F is the set of all attributes implied by α
- In other words, the largest β such that: $\alpha \rightarrow \beta$
- Redefining *super keys:*
 - The closure of a super key is the entire relation schema
- Redefining candidate keys:
 - 1. It is a super key
 - 2. No subset of it is a super key

Computing the closure for $\boldsymbol{\alpha}$

- Simple algorithm:
- 1. Start with $\beta = \alpha$.
- 2. Go over all functional dependencies, $\delta \rightarrow \gamma$, in F⁺
- 3. If $\delta \subseteq \beta$, then
 - add γ to β
- A. Repeat till β stops changing

Example

•	$R = (A, B, C, G, H, I)$ $F = \{ A \rightarrow B$ $A \rightarrow C$ $CG \rightarrow H$ $CG \rightarrow I$ $B \rightarrow H \}$
•	(AG) + ?
	• 1.β = AG
	• 2. $\beta = ABG$
	• 3. β = ABCG

- 4. β = ABCGH
- 5. β = ABCGHI
- done

- $\begin{array}{l} (\mathsf{A} \rightarrow \mathsf{B} \text{ and } \mathsf{A} \subseteq \mathsf{AG}) \\ (\mathsf{A} \rightarrow \mathsf{C} \text{ and } \mathsf{A} \subseteq \mathsf{ABG}) \\ (\mathsf{CG} \rightarrow \mathsf{H} \text{ and } \mathsf{CG} \subseteq \mathsf{ABCG}) \\ (\mathsf{CG} \rightarrow \mathsf{I} \text{ and } \mathsf{CG} \subseteq \mathsf{ABCGH}) \end{array}$
- Is (AG) a candidate key ?
- It is a super key.
- (A+) = ABCH, (G+) = G.
- YES.

282

Uses of attribute set closures

- Determining superkeys and candidate keys
- Determining if $\alpha \rightarrow \beta$ is a valid FD
 - Does α + contain β ?
- Can be used to compute F+

3. Extraneous Attributes

Consider *F*, and a functional dependency, $\alpha \rightarrow \beta$.

• "Extraneous": Any attributes in α or β that can be safely removed ?

without changing the constraints implied by F

- σ is *extraneous* in α iff:
 - 1. σ is in α , and
 - F logically implies F'
 - where $F' = (F \{\alpha \rightarrow \beta\}) \cup \{(\alpha \sigma) \rightarrow \beta\}$ (i.e., show that F implies $(\alpha \sigma) \rightarrow \beta$)
 - 2. or show (α σ)+ includes β under F
- σ is *extraneous* in β if:
 - 1. σ is in β , and
 - F' logically implies F,
 - $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta \sigma)\}$
 - 2. or show α^+ includes σ under F'

σ is *extraneous* in α iff: F → F', or $(α - σ)^+$ includes β under F σ is *extraneous* in β iff: F' → F, or $α^+$ includes σ in F' 284

