Outline

canonical covers

o]

» Storage....

288

4. Canonical Cover

» A canonical cover for F is a set of dependencies F, such that

o

F logically implies all dependencies in F, and
F.logically implies all dependencies in F, and
No functional dependency in F, contains an extraneous attribute, and

o

o

o

Each left side of functional dependency in £, is unique

» In some (vague) sense, it is a minimal version of F

» Create as follows:

» repeat
* use union rule to merge right sides
- eliminate extraneous attributes

» until Fc does not change

289

4 . C an O n |C al C Over rep.e:atse union rule to merge right sides

« eliminate extraneous attributes
until F_, does not change

» A=-B,A—=C,C—-D,AC—-BD

» Cover:
« A—=BC,C—-=D,AC—-=BD (union)
« aextrain AC — BD?
« NO: C+ = CD, doesn't include “BD”
« c extrain AC — BD?
« YES: A+ = ABCD, includes “BD”
« A—-BC,C—=D,A—-BD
« A—=BCD,C—=D (union)
« Bextrain A— BCD?
« FF=A—-=CD,C—D

« NO: A+=CD inF', notinclude “B” o is extraneous in o iff:
« Cextrain A— BCD? F—>F,or
e FF=A—-BD,C—=D (0. — 0)* includes B under F

« NO: A+=BD inF', notinclude “C” o is extraneous in p if:
D ex‘fra in A— BCD? F'—F or
- FF=A—=BC,C—=D ot includes o in F’

- YES: A+ = bed in P, includes “D”
.F,=A—BC,C-D

Recap

» What about 1st and 2nd normal forms ?
» INF:
o Essentially says that no set-valued attributes allowed
> Formally, a domain is called atomic if the elements of the domain are
considered indivisible
> A schema is in 1NF if the domains of all attributes are atomic
> We assumed 1NF throughout the discussion
e Non 1NF is just not a good idea

» 2NF:
> Mainly historic interest
o See Exercise 7.15 in the book

Recap

» We would like our relation schemas to:
o Not allow potential redundancy because of FDs

o Be dependency-preserving:

e Make it easy to check for dependencies
e Since they are a form of integrity constraints
» Functional Dependencies
> Domain knowledge about the data properties
» Normal forms
o Defines the rules that schemas must follow
> |Informs deconstruction

292

Databases

o Data Models
« Conceptual representation of the data
o Data Retrieval
« How to ask questions of the database
« How to answer those questions
o Data Storage
o How/where to store data, how to access it
o Data Integrity
« Manage crashes, concurrency
« Manage semantic inconsistencies

Query Processing/Storage

user que
q ry\l: -T * Given a input user query, decide how

to “execute” it

Query Processing Engine * Specify sequence of pages to be
brought in memory

* Operate upon the tuples to produce

page results
%)

* Bringing pages from disk to memory
Buffer Management * Managing the limited memory

block
requests ‘L - T

{ Space Management on

How are relations mapped to files?

* How are tuples mapped to disk blocks?

» Storage hierarchy
Persistent Storage (e.g., Disks)

Outline

Storage hierarchy
Disks

RAID

File Organization
Etc....

Storage Hierarchy

Tradeoffs between speed and cost of access

Volatile vs nonvolatile
« Volatile: Loses contents when power switched off

Sequential vs random access
« Sequential: read the data contiguously
select * from employee

« Random: read the data from anywhere at any time
select * from employee where name like '_a_ b’

Why care ?

* Need to know how data is stored in order to optimize, to
understand what'’s going on

How important is this today?

e Trade-offs shifted drastically over last 10-15 years
» Especially with fast network, SSDs, and high memories
» However, the volume of data is also growing quite rapidly
e Some observations:
» Cheaper to access another computer’s memory than local disk
» Cache is playing more and more important role
» Data often fits in memory of a single machine, or cluster of machines
» “Disk” considerations less important
Still: Disks are where most of the data lives today
» Similar reasoning/algorithms required though

Direct —

Access to CPU

Temporary
— Storage
Main Memory RAM Areas

Virtual Memory
Indirect Access to CPU

Secondary Starage Device Type

K/ Permanent
Operating System Networl Stora

— ge
Assisted Memory Removable Internet Areas

Management Drives Storage

Input Sources

Scanners/

Keyboard Removable @l Camera/ Remote Other
Media Mic/ Source Source
Video

source: http://cse1.net/recaps/4-memory.html

Storage Hierarchy: Cache

e Cache
» Super fast; volatile; Typically on chip
« L1vsL2vsL3caches 7?7
L1 about 64KB or so; L2 about 1MB; L3 8MB (on chip) to 256MB (off chip)

Huge L3 caches available now-a-days
« Becoming more and more important to care about this
Cache misses are expensive
« Similar tradeoffs as were seen between main memory and disks

» (Cache-coherency 77?7

Storage Hierarchy: Cache

L1 Cache
(built into chip)
@

3
il
‘
¢
’

. Local L2 Cache
(SRAM
memory bank)

RAM
{main memory)

source: http://cse1.net/recaps/4-memory.html

Storage Hierarchy: Cache

K8 core in the AMD Athlon 64 CPU

Main Memory
<=8 GB
Other
-
CPUs
L2 Unified
1 MB 16-way
\ ¥ \ \
\ 4 Y
L2 ITLB L2 DTLB
512 entries 512 entries
4-way 4-way
A A
Y Y Y Y Y Y
L1 Instruction Cache L1ITLB L1DTLB L1 Data Cache
64KB 2-way 1 KB 4/2 MB 41 KB 42 MB 64KB 2-way 2 ports

32 entries| 8 entries | |32 entries|8 entries
full assoc [full assoc] |full assoc full assoc

Storage Hierarchy

e Main memory
e 10s or 100s of ns; volatile
« Pretty cheap and dropping: 1GByte << $100
» Main memory databases feasible now-a-days
» Flash memory (EEPROM)
e Limited number of write/erase cycles
« Non-volatile, slower than main memory (especially writes)
e Examples ?
e Question
e How does what we discuss next change if we use flash memory only 7

* Key issue: Random access as cheap as sequential access

Storage Hierarchy

* Magnetic Disk (HDD or just “Hard Drive”)
e Non-volatile
« Sequential access much much faster than random access
« Discuss in more detail later
» Optical Storage - CDs/DVDs; Jukeboxes
» Used more as backups... Why ?
» Very slow to write (if possible at all)
» Tape storage
» Backups; super-cheap; painful to access

« |IBM just released a secure tape drive storage solution

Storage...

e Primary

* e.g. Main memory, cache; typically volatile, fast
e Secondary

e e.g. Disks; Solid State Drives (SSD); non-volatile
e Tertiary

* e.g. Tapes; Non-volatile, super cheap, slow

Storage Hierarchy

Storage type Access time Relative access time
L1 cache 0.5ns Blink of an eye

L2 cache 7ns 4 seconds

1MB from RAM 0.25 ms 5 days

1MB from SSD 1ms 23 days

HDD seek 10 ms 231 days

1MB from HDD 20 ms 1.25 years

source: http://cse1.net/recaps/4-memory.html

Outline

e Storage hierarchy

e Disks

e RAID

e File Organization

e EtC....

From Computer Desktop Encyclopedia

1956 geréggurr:ed#:t?o::rgfssi::s's Machines Corporation : : : ®
IBM RAMAC Unauthorized use not permitted eeo0
24” platters Y eoo
100,000 characters each : °

5 million characters

1 9 7 9 From Compul_er Deskt_op‘acycloped»a
SEAGATE o Sy el
SMB

2006

1998
SEAGATE
47GB

Western Digital
500GB
Weight (max. g): 600g

NEW!
500 GB

WD Caviar®SE16

16 MB cache. SATA 300 MB/s.
Fast. Cool. Quiet.

Shop Now | » More Info

2000-ish:

Single hard drive:
Seagate Barracuda 7200.10 SATA
750 GB
7200 rpm
weight: 720g
Uses “perpendicular recording”

Microdrives

Now:
* 4 TB HDD $99
« 4TBSSD $289

ValHSOoL

Toshiba 80GB

Microdrive™ ||

IBM 1 GB

cylinder c—1 ead-write
head

rotation

Spindle Head

Actuator Arm

Actuator Axis

Power Connector

Jumper Block
Actuator

IDE Connector

000
000
o0
“Typical” Values e
Diameter: 1 inch — 15 inches
Cylinders: 100 — 2000
Surfaces: 1or2
(Tracks/cyl) 2 (floppies) — 30
Sector Size: 512B — 50K
Capacity =2 360 KB to 2TB (as of Feb
2010)

Rotations per minute (rpm) > 5400 to 15000

Accessing Data

e Accessing a sector
Time to seek to the track (seek time)
average 4 to 10ms

+ Waiting for the sector to get under the head (rotational latency)
average 4 to 11ms

+ Time to transfer the data (transfer time)
very low

About 10ms per access
So if randomly accessed blocks, can only do 100 block transfers
100 x 512bytes = 50 KB/s

e Data transfer rates

Rate at which data can be transferred (w/o any seeks)

30-50MB/s to up to 200MB/s (Compare to above)
Seeks are bad !

Seagate Barracuda: 1TB

e Heads 8, Disks 4

e Bytes per sector: 512 bytes

e Default cylinders: 16,383

e Defaults sectors per track: 63

e Defaults read/write heads: 16

e Spindle speed: 7200 rpm

e Internal data transfer rate: 1287 Mbits/sec max

e Average latency: 4.16msec

e Track-to-track seek time: 1msec-1.2msec

e Average seek: 8.5-9.5msec

e We also care a lot about power now-a-days
« Why?

Reliability

e Mean time to/between failure (MTTF/MTBF):
* 5710 136 years
e Consider:
¢ 1000 new disks
» 1,200,000 hours (136 years) of MTTF each
» On average, one will fail in1200 hours = 50 days !

Disk Controller

e |nterface between the disk and the CPU
e Accepts the commands

e checksums to verify correctness

e Remaps bad sectors

system bus

disk
controller |

disks

Optimizing block accesses

e Typically sectors too small
e Block: A contiguous sequence of sectors
e 4k to 16k
e All data transfers done in units of blocks
» Scheduling of block access requests ?
o Considerations: performance and fairness
e Elevator algorithm

Solid State Drives

» Essentially flash that emulates hard disk interfaces

e No seeks 2> Much better random reads performance

o Writes are slower, the number of writes at the same location
limited
* Must write an entire block at a time

e About a factor of 48 ...3 more expensive right now

e |Leading to radical hardware configuration change

Outline

e Storage hierarchy
Disks
RAID
File Organization
Etc....

RAID

 Redundant array of independent disks

e Goal:
« Disks are very cheap
« Failures are very costly
« Use “extra” disks to ensure reliability
If one disk goes down, the data still survives
« Also allows faster access to data

e Many raid “levels”
« Different reliability and performance properties

Redundant Array Independent Disks

G

RAID 0 - Blocks Str?éd. No Mirror. No Parity. RAID 1 - Blocks Mirrored. No Stripe. No parity.
Fast! Redundant!
Data Disks ECC Disks @ @ @
(o1]
|8 -
@ | (=
RAID 2 - Bits Striped. (and stores ECC) v &/z \/

C
RAID 5 - Blocks Striped. Distributed Parity.

Weird!

thegeekstuff.com

RAID Level 5

» Distributed parity “blocks” instead of bits
e Normal operation:
« “Read” directly from single disk.
Load distributed across all 5 disks
« “Write”: Need to read and update the parity block

To update 9to 9’
read 9 and P2
compute P2’ = P2 xor 9 xor 9’
write 9" and P2’

PO 0 1 2 3

T C LT S

(f) RAID 5: block-interleaved distributed parity 12 13 14 P3 15

RAID Level 5

» Failure operation (disk 3 has failed)

» “Read block 0”: Read it directly from disk 2
« “Read block 1” (which is on disk 3)

Read PO, 0O, 2, 3 and compute 1 = PO xor O xor 2 xor 3
o “Write”:

To update 9to 9’

read 9 and P2
Oh... P2ison disk 3

So no need to update it
Write 9’

mEEEs

(f) RAID 5: block-interleaved distributed parity

Choosing a RAID level

» RAID O striping fastest, but no fault tolerance
e Main choice between RAID 1 and RAID 5
e Level 1 better write performance than level 5
» Level 5: 2 block reads and 2 block writes to write a single block
» Level 1: only requires 2 block writes
» Level 1 preferred for high update environments such as log disks
e Level 5 lower storage cost
» Usable storage for Level 1 only 50% of raw disk capacity

» Level 5 is preferred for applications with low update rate,
and large amounts of data

« SSD?
» performance already good, just care about fault tolerance

