
Outline
 Mechanisms and definitions to work with FDs
◦ Armstrong axioms
◦ FD closures
◦ attribute closures
◦ extraneous attributes
◦ canonical covers

 Storage….

288

4. Canonical Cover
 A canonical cover for F is a set of dependencies Fc such that
◦ F logically implies all dependencies in Fc, and
◦ Fc logically implies all dependencies in F, and
◦ No functional dependency in Fc contains an extraneous attribute, and
◦ Each left side of functional dependency in Fc is unique

 In some (vague) sense, it is a minimal version of F

 Create as follows:
 repeat

● use union rule to merge right sides
● eliminate extraneous attributes

 until Fc does not change

289

4. Canonical Cover
 A → B, A → C, C → D, AC → BD
 Cover:

• A → BC, C → D, AC → BD (union)
• a extra in AC → BD?

• NO: C+ = CD, doesn't include “BD”
• c extra in AC → BD?

• YES: A+ = ABCD, includes “BD”
• A → BC, C → D, A → BD
• A → BCD, C → D (union)
• B extra in A → BCD?

• F' = A → CD, C → D
• NO: A+ = CD in F', not include “B”

• C extra in A → BCD?
• F' = A → BD, C → D
• NO: A+ = BD in F', not include “C”

• D extra in A → BCD?
• F' = A → BC, C → D
• YES: A+ = bcd in F’, includes “D”

• Fc = A → BC, C → D

repeat
• use union rule to merge right sides
• eliminate extraneous attributes

until Fc does not change

σ is extraneous in α iff:
 F → F’, or
 (α – σ)+ includes β under F

σ is extraneous in β iff:
 F’ → F, or
 α+ includes σ in F’

290

Recap
 What about 1st and 2nd normal forms ?
 1NF:
◦ Essentially says that no set-valued attributes allowed
◦ Formally, a domain is called atomic if the elements of the domain are

considered indivisible
◦ A schema is in 1NF if the domains of all attributes are atomic
◦ We assumed 1NF throughout the discussion
● Non 1NF is just not a good idea

 2NF:
◦ Mainly historic interest
◦ See Exercise 7.15 in the book

291

Recap
 We would like our relation schemas to:
◦ Not allow potential redundancy because of FDs
◦ Be dependency-preserving:
● Make it easy to check for dependencies
● Since they are a form of integrity constraints

 Functional Dependencies
◦ Domain knowledge about the data properties

 Normal forms
◦ Defines the rules that schemas must follow
◦ Informs deconstruction

292

● Data Models
● Conceptual representation of the data

● Data Retrieval
● How to ask questions of the database
● How to answer those questions

● Data Storage
● How/where to store data, how to access it

● Data Integrity
● Manage crashes, concurrency
● Manage semantic inconsistencies

Databases

Query Processing/Storage

Space Management on
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given a input user query, decide how
to “execute” it

• Specify sequence of pages to be
brought in memory

• Operate upon the tuples to produce
results

user query

page
requests

block
requests

results

pointers
to pages

data

Outline
● Storage hierarchy
● Disks
● RAID
● File Organization
● Etc….

Storage Hierarchy
● Tradeoffs between speed and cost of access

● Volatile vs nonvolatile
● Volatile: Loses contents when power switched off

● Sequential vs random access
● Sequential: read the data contiguously

● select * from employee
● Random: read the data from anywhere at any time

● select * from employee where name like ‘__a__b’

● Why care ?
● Need to know how data is stored in order to optimize, to

understand what’s going on

How important is this today?
● Trade-offs shifted drastically over last 10-15 years

● Especially with fast network, SSDs, and high memories
● However, the volume of data is also growing quite rapidly

● Some observations:
● Cheaper to access another computer’s memory than local disk
● Cache is playing more and more important role
● Data often fits in memory of a single machine, or cluster of machines
● “Disk” considerations less important

● Still: Disks are where most of the data lives today
● Similar reasoning/algorithms required though

Storage Hierarchy

source: http://cse1.net/recaps/4-memory.html

Storage Hierarchy: Cache
● Cache

● Super fast; volatile; Typically on chip
● L1 vs L2 vs L3 caches ???

● L1 about 64KB or so; L2 about 1MB; L3 8MB (on chip) to 256MB (off chip)
● Huge L3 caches available now-a-days

● Becoming more and more important to care about this
● Cache misses are expensive

● Similar tradeoffs as were seen between main memory and disks
● Cache-coherency ??

Storage Hierarchy: Cache

source: http://cse1.net/recaps/4-memory.html

Storage Hierarchy: Cache
K8 core in the AMD Athlon 64 CPU

Storage Hierarchy
● Main memory

● 10s or 100s of ns; volatile
● Pretty cheap and dropping: 1GByte << $100
● Main memory databases feasible now-a-days

● Flash memory (EEPROM)
● Limited number of write/erase cycles
● Non-volatile, slower than main memory (especially writes)
● Examples ?

● Question
● How does what we discuss next change if we use flash memory only ?
● Key issue: Random access as cheap as sequential access

Storage Hierarchy
● Magnetic Disk (HDD or just “Hard Drive”)

● Non-volatile
● Sequential access much much faster than random access
● Discuss in more detail later

● Optical Storage - CDs/DVDs; Jukeboxes
● Used more as backups… Why ?
● Very slow to write (if possible at all)

● Tape storage
● Backups; super-cheap; painful to access
● IBM just released a secure tape drive storage solution

Storage…
● Primary

● e.g. Main memory, cache; typically volatile, fast
● Secondary

● e.g. Disks; Solid State Drives (SSD); non-volatile
● Tertiary

● e.g. Tapes; Non-volatile, super cheap, slow

Storage Hierarchy

source: http://cse1.net/recaps/4-memory.html

Outline
● Storage hierarchy
● Disks
● RAID
● File Organization
● Etc….

1956
IBM RAMAC
24” platters
100,000 characters each
5 million characters

1979
SEAGATE
5MB

1998
SEAGATE
47GB

2006
Western Digital
500GB
Weight (max. g): 600g

2000-ish:

Single hard drive:
 Seagate Barracuda 7200.10 SATA
 750 GB
 7200 rpm
 weight: 720g
 Uses “perpendicular recording”

Microdrives

IBM 1 GB

Toshiba 80GB

Now:
• 4 TB HDD $99
• 4 TB SSD $289

“Typical” Values

Diameter: 1 inch → 15 inches

Cylinders: 100 → 2000

Surfaces: 1 or 2

(Tracks/cyl) 2 (floppies) → 30

Sector Size: 512B → 50K

Capacity  360 KB to 2TB (as of Feb

2010)

Rotations per minute (rpm)  5400 to 15000

Accessing Data
● Accessing a sector

● Time to seek to the track (seek time)
● average 4 to 10ms

● + Waiting for the sector to get under the head (rotational latency)
● average 4 to 11ms

● + Time to transfer the data (transfer time)
● very low

● About 10ms per access
● So if randomly accessed blocks, can only do 100 block transfers
● 100 x 512bytes = 50 KB/s

● Data transfer rates
● Rate at which data can be transferred (w/o any seeks)
● 30-50MB/s to up to 200MB/s (Compare to above)

● Seeks are bad !

Seagate Barracuda: 1TB
● Heads 8, Disks 4
● Bytes per sector: 512 bytes
● Default cylinders: 16,383
● Defaults sectors per track: 63
● Defaults read/write heads: 16
● Spindle speed: 7200 rpm
● Internal data transfer rate: 1287 Mbits/sec max
● Average latency: 4.16msec
● Track-to-track seek time: 1msec-1.2msec
● Average seek: 8.5-9.5msec
● We also care a lot about power now-a-days

● Why ?

Reliability
● Mean time to/between failure (MTTF/MTBF):

● 57 to 136 years
● Consider:

● 1000 new disks
● 1,200,000 hours (136 years) of MTTF each
● On average, one will fail in1200 hours = 50 days !

Disk Controller
● Interface between the disk and the CPU
● Accepts the commands
● checksums to verify correctness
● Remaps bad sectors

Optimizing block accesses
● Typically sectors too small
● Block: A contiguous sequence of sectors

● 4k to 16k
● All data transfers done in units of blocks

● Scheduling of block access requests ?
● Considerations: performance and fairness
● Elevator algorithm

Solid State Drives
● Essentially flash that emulates hard disk interfaces
● No seeks  Much better random reads performance
● Writes are slower, the number of writes at the same location

limited
● Must write an entire block at a time

● About a factor of 10 …3 more expensive right now

● Leading to radical hardware configuration change

Outline
● Storage hierarchy
● Disks
● RAID
● File Organization
● Etc….

RAID
● Redundant array of independent disks
● Goal:

● Disks are very cheap
● Failures are very costly
● Use “extra” disks to ensure reliability

● If one disk goes down, the data still survives
● Also allows faster access to data

● Many raid “levels”
● Different reliability and performance properties

Redundant Array Independent Disks

thegeekstuff.com

Fast! Redundant!

Weird!

RAID Level 5
● Distributed parity “blocks” instead of bits
● Normal operation:

● “Read” directly from single disk.
● Load distributed across all 5 disks

● “Write”: Need to read and update the parity block
● To update 9 to 9’

▪ read 9 and P2
▪ compute P2’ = P2 xor 9 xor 9’
▪ write 9’ and P2’

RAID Level 5
● Failure operation (disk 3 has failed)

● “Read block 0”: Read it directly from disk 2
● “Read block 1” (which is on disk 3)

● Read P0, 0, 2, 3 and compute 1 = P0 xor 0 xor 2 xor 3
● “Write”:

● To update 9 to 9’
▪ read 9 and P2

▪ Oh… P2 is on disk 3
▪ So no need to update it

▪ Write 9’

Choosing a RAID level
● RAID 0 striping fastest, but no fault tolerance
● Main choice between RAID 1 and RAID 5
● Level 1 better write performance than level 5

● Level 5: 2 block reads and 2 block writes to write a single block
● Level 1: only requires 2 block writes
● Level 1 preferred for high update environments such as log disks

● Level 5 lower storage cost
● Usable storage for Level 1 only 50% of raw disk capacity
● Level 5 is preferred for applications with low update rate,

and large amounts of data
● SSD?

● performance already good, just care about fault tolerance

