What We Will Cover

Map Reduce
Grandfather of most current approaches
e Apache Spark
« Current leader in big data (OLAP-style) frameworks
« Supports many query/analysis models, including a light version of SQL

« Used for Assignment 9
e MongoDB

o Perhaps the most popular NoSQL system, uses a "document” (JSON) data model

o Focus primarily on OLTP

o Doesn't really support joins (some limited ability today) — have to do that in the app
e How to “Parallelize” Operations

e Useful to understand how Spark and other systems actually work

« Often times you have to build these in the application layer

« The original MapReduce framework
Led to development of much work on large-scale data analysis (OLAP-style)
Basically a way to execute a group-by at scale on non-relational data

¢ Hadoop Distributed File System (briefly)

o Akey infrastructure piece, with no real alternative

« Basic file system interface, with replication and redundancy built in for failures
e Quick overview of other NoSQL data models

MapReduce Framework

Provides a fairly restricted, but still powerful abstraction for programming

Programmers write a pipeline of functions, called map or reduce
e map programs

inputs: a list of “records” (record defined arbitrarily — could be images,

genomes etc...)
output: for each record, produce a set of “(key, value)” pairs

» reduce programs
input: a list of “(key, {values})” grouped together from the mapper
output: whatever

» Both can do arbitrary computations on the input data as long as the basic

structure is followed

MapReduce Framework

input files mappers intermediate files reducers

output files

Word Count Example

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString(result));

MapReduce Framework: Word Count

input files mappers ((gj B intermediate files reducers output files
(a 1)
83 1
abacdb (b 1) ghi
(c, 1)
(a, 1)
p | @ 9
bcdaaa (a 1)
ababab (b, 1) (b, 6)
(d,1) (d 2)
(b, 1)
(b, 1)
(d, 1)
ccccc (b, 1)

More Efficient Word Count

input files mappers ((gj ii intermediate files reducers output files
1
5
abacdb
(a, 2)
(a, 3)
> (c, 1) (a8)
(c, 5) (c, 5)
bcdaaa
ababab ‘ > (b, 6)
(d, 2)
ccccc

‘mapper-side” combiner

Apache Spark

 Map-Reduce on steroids

e Book Chapters

* 10.4 (7TH EDITION) covers this topic, but Spark
programming guide is a better resource

» Assignment will refer to the programming guide

o Key topics:
* A Resilient Distributed Dataset (RDD)
* Operations on RDDs

Spark

e Open-source, distributed cluster computing framework

e Much better performance than Hadoop MapReduce through in-
memory caching and pipelining

e Originally provided a low-level RDD-centric API, but today, most of the
use is through the “Dataframes” (i.e., relations) API
« Dataframes support relational operations like Joins, Aggregates, etc.

((
’ Scala
Java pqthon
Spark Spark

DataFrame API

Spark Core

// Data SourceAYN\\

@databricks

Resilient Distributed Dataset (RDD)

1 RDD = Collection of records stored across multiple machines in-memory

Drivers (apps)
- Come and go
- Not fault-tolerant

In-memory partitions of RDD 1 RDD Manipulation

Com?
Worker Nodes fisults typically at

- Always running the end

4
O

e
n=ngs

In-memory partitions of RDD 2

In-memory partitions of RDD 3

Spark
. Why “Resilient”?

Can survive the failure of a worker node
* Spark maintains a “lineage graph” of how each RDD partition was created
e If a worker node fails, the partitions are recreated from its inputs

* Only a small set of well-defined operations are permitted on the RDDs
But the operations usually take in arbitrary "map” and “reduce” functions

\
1
|
1
I
1
1
I
1
1
1
1
1
1
1
1
1
|
I

e Fault tolerance for the “driver” IS trickier

* Drivers have arbitrary logic (cf., the programs you are writing)
* In some cases (e.g., Spark Streaming), you can do fault tolerance
* Butin general, driver failure requires a restart

Example Spark Program

Initialize RDD by reading the textFile and
partitioning. If textFile stored on HDFS, it is
already partitioned — just read each partition
as a separate RDD partition

Driver
from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

textFile = sc.textFile("README.md")

counts = textFile

.flatMap(lambda line: line.split(" "))

Split each line into words, creafing an RDD

.map(lambda word: (word, 1))

of words
For each word, output (word, 1)), creating a
new RDD
Do a group-by SUM aggregatelto count the
number of times each word appears

.reduceByKey(lambda a, b: a + b)

print(counts.take(100))

etrieve 100 of the values in the final RDD

/
.

Spark

o QOperations often take in a "function” as input
e Using the inline “lambda” functionality

flatMap(lambda line: line.split(" "))

e Or a more explicit function declaration

def split(line):

return line.split(" ")

flatMap(split)

e Similarly "reduce” functions essentially tell Spark how to do

pairwise aggregation

reduceByKey(lambda a, b: a + b)

» Spark will apply this to the dataset pair of values at a time
« Difficult to do something like “median”

Spark: Map

x1, X2, ... can be anything,
including documents,

images, text files, tuples,
InputRDD: [x1, x2, . dicts, etc.
/ X INPUtRDD: [x1, X2, ..., X_n]
map(lambda x: x + 1) def fn(x
return x+1

map(fn)
\ / map(fn)

outputRDD: [x1+1, x2+1,, x_n+1]

outputRDD: [fn(x1), fn(x2), ..., fn(x_n)]

Spark: flatMap

InputRDD: [(a1, b1), (a2, b2),] InputRDD: [‘the little brown fox...’; ...]

flatMap(lambda x: [x[0], x[1]]) flatMap(lambda x: x.split())

outputRDD: [a1, b1, a2, b2, ...] outputRDD: [‘the’, ‘little’, ‘brown’, ...]

Spark: groupByKey
InputRDD: [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)...]

InputRDD must be a collection of 2-tuples
Usually called (Key, Value) pairs
Value can be anything (e.g., dicts, tuples, bytes)

groupByKey()

outputRDD: [(a1, [b1, b3, b4, ...]), (a2, [b2, b5,...]), ...]

Spark: reduceByKey
InputRDD: [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)...]

InputRDD must be a collection of 2-tuples
Usually called (Key, Value) pairs

def func(V1, V2):
return V3

All of V1, V2, and V3
same type

reduceByKey(func)

outputRDD: [(a1, ...func(func(b1, b3), b4)...),
(a2, ...func(func(b2, b5), ...)...),]

"func” executed in parallel in a pairwise fashion

Spark: join

InputRDD1: [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)...]
InputRDD2: [(a1, c1), (a2, c2), (a1, c3), (a1, c4), (a2, c5)...]

InputRDD1 and InputRDD2 both must
be a collection of 2-tuples

inputRDD1.join(inputRDD2)

outputRDD: [(a1, (b1, c1)),
(a1, (b1, c3)),
(a1, (b1, c4)),

o]

Spark: cogroup

InputRDD1: [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, bj)...]
InputRDD2: [(a1, c1), (a2, c2), (a1, c3), (a1, c4), (a2, c5)...]

InputRDD1 and InputRDD2 both must
be a collection of 2-tuples

inputRDD1.cogroup(inputRDD2)

outputRDD: [(a1, ([b1, b3, b4, ...], [c1, c3, ¢4, ...]),
(a2, ([b2, b5, ...], [c2, c5, ..]), ...
]

RDD Operations

Transformations

The following table lists some of the common transformations supported by Spark. Refer to the RDD API doc (Scala, Java, Python, R) and pair
RDD functions doc (Scala, Java) for details.

Transformation Meaning

mapifunc) Return a new distributed dataset formed by passing each element of the source through a
function func.

fitter(func) Return a new dataset formed by selecting those elements of the source on which func
returns true.

flatMapifunc) Similar to map, but each input item can be mapped to 0 or more output items (so func
should return a Seq rather than a single item).

mapPartitions(func) Similar to map, but runs separately on each partition (block) of the RDD, so func must be of
type lterator<T> => Iterator<U> when running on an RDD of type T.

mapPartitionsWithindex(func) Similar to mapPartitions, but also provides func with an integer value representing the index

of the partition, so func must be of type (Int, lterator<T>) => Iterator<U> when running on an

RDD of type T.

sample(withReplacement, fraction, seed) ‘Sample a fraction fraction of the data, with or without replacement, using a given random

number generator seed.

union(otherDatasef)
argument.

intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source dataset and the

argument.
distinct((numPartitions]) Return a new dataset that contains the distinct elements of the source dataset.
groupByKey((numPartitions)) When called on a dataset of (K, V) pairs, returns a dataset of (K, Iterable<V>) pairs.

Note: If you are grouping in order to perform an aggregation (such as a sum or average)
over each ey, using reduceByKey or aggregateByKey will yield much better performance.
Note: By default, the level of parallelism in the output depends on the number of partitions
of the parent RDD. You can pass an optional nunPartitions argument to set a different
number of tasks.

reduceByKey(func, [numPartitions])
each key are aggregated using the given reduce function func, which must be of type (V.V)
=> V. Like in groupByKey, the number of reduce tasks is configurable through an optional
second argument.

aggregateByKey(zeroValue)(seqOp, combOp,
[numPartitions))

When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values
for each key are aggregated using the given combine functions and a neutral "zero" value.
Allows an aggregated value type that is different than the input value type, while avoiding
unnecessary allocations. Like in groupBykey, the number of reduce tasks is configurable
through an optional second argument.

sortByKey(lascending], [numPartitions]) When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of

(K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean

Return a new dataset that contains the union of the elements in the source dataset and the

When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs where the values for

Actions

The following tabie lists some of the common actions supported by Spark. Refer to the RDD API doc (Scala, Java, Python,)

and pair RDD functions doc (Scala, Java) for details.

Action Meaning
reduce(func) the dataset (which takes
‘The function should that P
collect) Retur all the elements of the dataset as an array t the diver program. This is usually useful after a fiter
or other operation that returns a sufficiently small subset of the data.
count) Retur the number of elements in the dataset.
first) Return the first element of the dataset (similar to take()).
take(n) Retur an array with the first n elements of the dataset.
takeSamplo(withReplacement, Retumn an array with a random sample of num elements of the datase, with or without replacemen,
num, [ssed]) optionally pre-specifying a random number generator seed.
fordering)) Retum ofthe order or a custom comparator.
Write the dataset as a text il (or set of text iles)in a given directory in the local
filesystem, HDFS or any other Hadoop-supported file system. Spark willcalltoString on each element to
convert it to a ine of text in the file.
lefpa the datasetas a agiven path in the . HOFS
(Java and Scale) o any other H file system. Thi lable on RDDs of implement
Hadoop's In Scala, it types that are implicitly

(Spark includes conversions for basic types like Int, Double, String, etc).

Write le format
using SparkContext. objectFile().

which can
(Java and Scala)
countByKey(Only available on RDDs of type (K, V). Returns a hashmap of (K, In) pairs with the count of each key.

foreach(tunc) Run a function func on each element of the dataset. This is usually done for side effects such as updating

9
Note: other th
behavior. See Understanding closures for more detail.

the foreach() may resultin undefined

Dataframes Example

def basic_df_example(spark):
$example on:create_df$
spark is an existing SparkSession
df = spark.read.json("examples/src/main/resources/people.json")
Displays the content of the DataFrame to stdout
df.show()
R g
| age]| name |
At
|null|Michael|
| 30| Andy|
#
#
#

#*

| 19| Justin]
Fo— e+
$example off:create_df$

$example on:untyped_ops$
spark, df are from the previous example
Print the schema in a tree format

df.printSchema()

root

|-— age: long (nullable = true)

|-- name: string (nullable = true)

Select only the "name" column
df.select("name").show()
ot

| name |

ot

|Michael]|

| Andy|

| Justin]|

o +

HEHHHHHR

Select everybody, but increment the age by 1
df.select(df['name'], dfl['age'] + 1).show()

e

| name|(age + 1)|
+
|Michael]| null|
| Andy | 31
| Justin]| 20|
+

Select people older than 21
df.filter(df['age'] > 21).show()
At
|age|name|

.
| 30|Andy|

ot

Count people by age
df.groupBy("age").count().show()
B S 1

H* 6

| age|count
+

#
#
#
#
#
$example off:untyped_ops$

sq\DF = spark.sql("SELECT * FROM people")
sqlDF. show()

-t +
| age] name |
+- +

|null|Michael]|
| 30| Andy]|
| 19| Justin|
At

+
$example off:run_sql$

$example on:global_temp_view$
Register the DataFrame as a global temporary view
df.createGlobalTempView("people")

Global temporary view is tied to a system preserved database
“global_temp®
spark.sql("SELECT * FROM global_temp.people").show()
+

name |
ot +
|null|Michael]
30| Andy|

| 19| Justin]
ot +

HERERRER

Summary

e Spark is a popular and widely used framework for large-scale
computing
e Simple programming interface
You don't need to typically worry about the parallelization

That’s handled by Spark transparently
In practice, may need to fiddle with number of partitions etc.

* Managed services supported by several vendors including
Databricks (started by the authors of Spark), Cloudera, etc.
e Many other concepts that we did not discuss

Shared accumulator and broadcast variables
Support for Machine Learning, Graph Analytics, Streaming, and other use cases

e Alternatives include: Apache Tez, Flink, and several others

Query Processing/Storage

user que
query ‘l’ -1‘ * Given a query, decide how to

“‘execute” it

Query Processing Engine * Specify sequence of pages to be
brought in memory

* QOperate upon the tuples to produce

page results
52 | B

* Bringing pages from disk to memory
Buffer Management * Managing the limited memory

block
requests \l, - T

{ Space Management on

How are relations mapped to files?

* How are tuples mapped to disk blocks?

« Storage hierarchy
Persistent Storage (e.g., Disks)

Outline

Buffer manager
File Organization
Etc....

Buffer Manager

 When the QP wants a block, it asks the “buffer manager”

» The block must be in memory to operate upon

e Buffer manager:

» If block already in memory: return a pointer to it
e Ifnot:
Evict a current page
Either write it to temporary storage,
or write it back to its original location,
or just throw it away (if it was read from disk, and not modified)
and make a request to the storage subsystem to fetch it

Buffer Manager

Page Requests from Higher Levels

BUFFER POOL

/_/

disk page
S~

free frame

MAIN MEMORY

DISK choice of frame dictated
DB by replacement policy

Buffer Manager

e Similar to virtual memory manager
o Buffer replacement policies
» Which page to evict ?
* LRU: Least Recently Used
Throw out the page that was not used in a long time
 MRU: Most Recently Used
The opposite

If data set too big for cache, keep older pages as they might be
accessed again before recent pages.

o« Clock?

An efficient implementation of LRU

Buffer Manager Requirements

e Pinning a block

* Not allowed to evict
» Force-output (force-write)

» Force the contents of a block to be written to disk
e Order the writes

« This block must be written to disk before that block

Critical for fault tolerant guarantees

« Otherwise database has no control over what is on disk

Outline

e Storage hierarchy
Disks

RAID

Buffer Manager
File Organization
Etc....

File Organization

» How are the relations mapped to the disk blocks ?

« Use a standard file system ?

High-end systems have their own OS/file systems

OS interferes more than helps in many cases
« Mapping of relations to file ?

One-to-one ?

Advantages in storing multiple relations clustered together
« A fileis essentially a collection of disk blocks

How are the tuples mapped to the disk blocks ?

How are they stored within each block

File Organization

o Goals:

» Allow insertion/deletions of tuples/records

» Fetch a particular record (specified by record id)

» Find all tuples that match a condition (say SSN = 123) ?
e Simplest case

» Each relation is mapped to a file

» Afile contains a sequence of records

» Each record corresponds to a logical tuple
o Next:

» How are tuples/records stored within a block ?

Fixed Length Records

n = number of bytes per record
Store record i at position:

o n*(i—-1)

Records may cross blocks

» Not desirable

» Stagger so that that doesn’t happen
Inserting a tuple ?

+ Depends on the policy used

» One option: Simply append at the end of the
file. Problems?

e Deletions ?

» Option 1: Rearrange
» Option 2: Keep a free list and use for next

insert

The above assumes records not ordered.

record 0 | A-102 | Perryridge | 400
record 1 A-305 | Round Hill | 350
record 2 A-215 | Mianus 700
record 3 A-101 | Downtown | 500
record 4 A-222 | Redwood 700
record 5 | A-201 | Perryridge | 900
record 6 | A-217 | Brighton 750
record 7 A-110 | Downtown | 600
record 8 | A-218 | Perryridge | 700

Fixed Length Records

e Deleting: using “free lists”

header 3
record 0 | 10101 | Srinivasan | Comp. Sci. | 65000 >
record 1 4
record2 | 15151 | Mozart Music 40000
record 3 | 22222 | Einstein Physics 95000
record 4 4
record 5 | 33456 | Gold Physics 87000
record 6 4
record 7 | 58583 | Califieri History 62000 | ——
record 8 | 76543 | Singh Finance 80000
record 9 | 76766 | Crick Biology 72000
record 10 | 83821 | Brandt Comp. Sci. | 92000
record 11 | 98345 | Kim Elec. Eng. 80000

Variable-length Records

Slotted page structure

Block Header Records

Size |# Entries|
[Location |

End of Free Space

e [ndirection:
» The records may move inside the page, but the outside world is oblivious to it
« Why?
The headers are used as an indirection mechanism

“Record ID 1000 is the 5th entry in page X”

