
What We Will Cover
● Map Reduce

● Grandfather of most current approaches
● Apache Spark

● Current leader in big data (OLAP-style) frameworks
● Supports many query/analysis models, including a light version of SQL
● Used for Assignment 9

● MongoDB
● Perhaps the most popular NoSQL system, uses a ”document” (JSON) data model
● Focus primarily on OLTP
● Doesn’t really support joins (some limited ability today) – have to do that in the app

● How to “Parallelize” Operations
● Useful to understand how Spark and other systems actually work
● Often times you have to build these in the application layer
● The original MapReduce framework

● Led to development of much work on large-scale data analysis (OLAP-style)
● Basically a way to execute a group-by at scale on non-relational data

● Hadoop Distributed File System (briefly)
● A key infrastructure piece, with no real alternative
● Basic file system interface, with replication and redundancy built in for failures

● Quick overview of other NoSQL data models

MapReduce Framework
● Provides a fairly restricted, but still powerful abstraction for programming

● Programmers write a pipeline of functions, called map or reduce
● map programs

● inputs: a list of “records” (record defined arbitrarily – could be images,
genomes etc…)

● output: for each record, produce a set of “(key, value)” pairs

● reduce programs
● input: a list of “(key, {values})” grouped together from the mapper
● output: whatever

● Both can do arbitrary computations on the input data as long as the basic
structure is followed

MapReduce Framework
input files mappers intermediate files reducers output files

Word Count Example

input files mappers reducers

(a, 8)
(c, 5)

a b a c d b

b c d a a a

a b a b a b

c c c c c

(a, 1)
(a, 1)
(c, 1)
(a, 1)
(a, 1)
(a, 1)

…

(a, 1)
(b, 1)
(a, 1)
(c, 1)
(d, 1)
(b, 1)

(b, 1)
(d, 1)
(b, 1)
(b, 1)
(d, 1)
(b, 1)

…

(b, 6)
(d, 2)

intermediate files output files

MapReduce Framework: Word Count

More Efficient Word Count
input files mappers reducers

(a, 8)
(c, 5)

a b a c d b

b c d a a a

a b a b a b

c c c c c

(a, 2)
(a, 3)
(c, 1)
(c, 5)

(a, 2)
(b, 2)
(c, 1)
(d, 1)

…

(b, 6)
(d, 2)

“mapper-side” combiner

intermediate files output files

● Map-Reduce on steroids

● Book Chapters
● 10.4 (7TH EDITION) covers this topic, but Spark

programming guide is a better resource
● Assignment will refer to the programming guide

● Key topics:
● A Resilient Distributed Dataset (RDD)
● Operations on RDDs

Apache Spark

Spark
● Open-source, distributed cluster computing framework
● Much better performance than Hadoop MapReduce through in-

memory caching and pipelining
● Originally provided a low-level RDD-centric API, but today, most of the

use is through the “Dataframes” (i.e., relations) API
● Dataframes support relational operations like Joins, Aggregates, etc.

Resilient Distributed Dataset (RDD)
● RDD = Collection of records stored across multiple machines in-memory

Worker Nodes
- Always running

Drivers (apps)
- Come and go
- Not fault-tolerant

In-memory partitions of RDD 2

In-memory partitions of RDD 3

In-memory partitions of RDD 1 RDD Manipulation
Commands

Results – typically at
the end

Spark
● Why “Resilient”?

● Can survive the failure of a worker node
● Spark maintains a “lineage graph” of how each RDD partition was created
● If a worker node fails, the partitions are recreated from its inputs
● Only a small set of well-defined operations are permitted on the RDDs

● But the operations usually take in arbitrary ”map” and “reduce” functions

● Fault tolerance for the “driver” is trickier

● Drivers have arbitrary logic (cf., the programs you are writing)
● In some cases (e.g., Spark Streaming), you can do fault tolerance
● But in general, driver failure requires a restart

Example Spark Program
Driver
from pyspark import SparkContext

sc = SparkContext("local", "Simple App")

textFile = sc.textFile("README.md")

counts = textFile
 .flatMap(lambda line: line.split(" "))
 .map(lambda word: (word, 1))
 .reduceByKey(lambda a, b: a + b)

print(counts.take(100))

Initialize RDD by reading the textFile and
partitioning. If textFile stored on HDFS, it is
already partitioned – just read each partition
as a separate RDD partition

Split each line into words, creating an RDD
of words
For each word, output (word, 1), creating a
new RDD
Do a group-by SUM aggregate to count the
number of times each word appears Retrieve 100 of the values in the final RDD

Spark
● Operations often take in a ”function” as input
● Using the inline “lambda” functionality

● Or a more explicit function declaration

● Similarly ”reduce” functions essentially tell Spark how to do
pairwise aggregation

● Spark will apply this to the dataset pair of values at a time
● Difficult to do something like “median”

flatMap(lambda line: line.split(" "))

def split(line):
 return line.split(" ")

flatMap(split)

reduceByKey(lambda a, b: a + b)

Spark: Map

InputRDD: [x1, x2, …., x_n]

map(lambda x: x + 1) def fn(x):
 return x+1
map(fn)

outputRDD: [x1+1, x2+1, …., x_n+1]

x1, x2, … can be anything,
including documents,
images, text files, tuples,
dicts, etc.

InputRDD: [x1, x2, …, x_n]

map(fn)

outputRDD: [fn(x1), fn(x2), …, fn(x_n)]

Spark: flatMap

InputRDD: [(a1, b1), (a2, b2), ….]

flatMap(lambda x: [x[0], x[1]])

outputRDD: [a1, b1, a2, b2, …]

InputRDD: [‘the little brown fox…’, …]

flatMap(lambda x: x.split())

outputRDD: [‘the’, ‘little’, ‘brown’, …]

Spark: groupByKey
InputRDD: [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)…]

groupByKey()

outputRDD: [(a1, [b1, b3, b4, …]), (a2, [b2, b5,…]), …]

InputRDD must be a collection of 2-tuples
Usually called (Key, Value) pairs
Value can be anything (e.g., dicts, tuples, bytes)

Spark: reduceByKey
InputRDD: [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)…]

reduceByKey(func)

outputRDD: [(a1, …func(func(b1, b3), b4)…),
 (a2, …func(func(b2, b5), …)…),]

InputRDD must be a collection of 2-tuples
Usually called (Key, Value) pairs

def func(V1, V2):
 return V3

All of V1, V2, and V3
same type

”func” executed in parallel in a pairwise fashion

Spark: join
InputRDD1: [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)…]

inputRDD1.join(inputRDD2)

outputRDD: [(a1, (b1, c1)),
 (a1, (b1, c3)),
 (a1, (b1, c4)),

….]

InputRDD1 and InputRDD2 both must
be a collection of 2-tuples

InputRDD2: [(a1, c1), (a2, c2), (a1, c3), (a1, c4), (a2, c5)…]

Spark: cogroup
InputRDD1: [(a1, b1), (a2, b2), (a1, b3), (a1, b4), (a2, b5)…]

inputRDD1.cogroup(inputRDD2)

outputRDD: [(a1, ([b1, b3, b4, …], [c1, c3, c4, …]),
 (a2, ([b2, b5, …], [c2, c5, …]), …

]

InputRDD1 and InputRDD2 both must
be a collection of 2-tuples

InputRDD2: [(a1, c1), (a2, c2), (a1, c3), (a1, c4), (a2, c5)…]

RDD Operations

Dataframes Example
def basic_df_example(spark):
 # $example on:create_df$
 # spark is an existing SparkSession
 df = spark.read.json("examples/src/main/resources/people.json")
 # Displays the content of the DataFrame to stdout
 df.show()
 # +----+-------+
 # | age| name|
 # +----+-------+
 # |null|Michael|
 # | 30| Andy|
 # | 19| Justin|
 # +----+-------+
 # $example off:create_df$

 # $example on:untyped_ops$
 # spark, df are from the previous example
 # Print the schema in a tree format
 df.printSchema()
 # root
 # |-- age: long (nullable = true)
 # |-- name: string (nullable = true)

 # Select only the "name" column
 df.select("name").show()
 # +-------+
 # | name|
 # +-------+
 # |Michael|
 # | Andy|
 # | Justin|
 # +-------+

 # Select everybody, but increment the age by 1
 df.select(df['name'], df['age'] + 1).show()
 # +-------+---------+
 # | name|(age + 1)|
 # +-------+---------+
 # |Michael| null|
 # | Andy| 31|
 # | Justin| 20|
 # +-------+---------+

 # Select people older than 21
 df.filter(df['age'] > 21).show()
 # +---+----+
 # |age|name|
 # +---+----+
 # | 30|Andy|
 # +---+----+

 # Count people by age
 df.groupBy("age").count().show()
 # +----+-----+
 # | age|count|
 # +----+-----+
 # | 19| 1|
 # |null| 1|
 # | 30| 1|
 # +----+-----+
 # $example off:untyped_ops$

 sqlDF = spark.sql("SELECT * FROM people")
 sqlDF.show()
 # +----+-------+
 # | age| name|
 # +----+-------+
 # |null|Michael|
 # | 30| Andy|
 # | 19| Justin|
 # +----+-------+
 # $example off:run_sql$

 # $example on:global_temp_view$
 # Register the DataFrame as a global temporary view
 df.createGlobalTempView("people")

 # Global temporary view is tied to a system preserved database
`global_temp`
 spark.sql("SELECT * FROM global_temp.people").show()
 # +----+-------+
 # | age| name|
 # +----+-------+
 # |null|Michael|
 # | 30| Andy|
 # | 19| Justin|
 # +----+-------+

Summary
● Spark is a popular and widely used framework for large-scale

computing
● Simple programming interface

● You don’t need to typically worry about the parallelization
● That’s handled by Spark transparently
● In practice, may need to fiddle with number of partitions etc.

● Managed services supported by several vendors including
Databricks (started by the authors of Spark), Cloudera, etc.

● Many other concepts that we did not discuss
● Shared accumulator and broadcast variables
● Support for Machine Learning, Graph Analytics, Streaming, and other use cases

● Alternatives include: Apache Tez, Flink, and several others

Query Processing/Storage

Space Management on
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given a query, decide how to
“execute” it

• Specify sequence of pages to be
brought in memory

• Operate upon the tuples to produce
results

user query

page
requests

block
requests

results

pointers
to pages

data

Outline
● Storage hierarchy
● Disks
● RAID
● Spark
● Buffer manager
● File Organization
● Etc….

Buffer Manager
● When the QP wants a block, it asks the “buffer manager”

● The block must be in memory to operate upon
● Buffer manager:

● If block already in memory: return a pointer to it
● If not:

● Evict a current page
▪ Either write it to temporary storage,
▪ or write it back to its original location,
▪ or just throw it away (if it was read from disk, and not modified)

● and make a request to the storage subsystem to fetch it

Buffer Manager

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Buffer Manager
● Similar to virtual memory manager
● Buffer replacement policies

● Which page to evict ?
● LRU: Least Recently Used

● Throw out the page that was not used in a long time
● MRU: Most Recently Used

● The opposite
● If data set too big for cache, keep older pages as they might be

accessed again before recent pages.
● Clock ?

● An efficient implementation of LRU

Buffer Manager Requirements

● Pinning a block
● Not allowed to evict

● Force-output (force-write)
● Force the contents of a block to be written to disk

● Order the writes
● This block must be written to disk before that block

Critical for fault tolerant guarantees
● Otherwise database has no control over what is on disk

Outline
● Storage hierarchy
● Disks
● RAID
● Buffer Manager
● File Organization
● Etc….

File Organization
● How are the relations mapped to the disk blocks ?

● Use a standard file system ?
● High-end systems have their own OS/file systems
● OS interferes more than helps in many cases

● Mapping of relations to file ?
● One-to-one ?
● Advantages in storing multiple relations clustered together

● A file is essentially a collection of disk blocks
● How are the tuples mapped to the disk blocks ?
● How are they stored within each block

File Organization
● Goals:

● Allow insertion/deletions of tuples/records
● Fetch a particular record (specified by record id)
● Find all tuples that match a condition (say SSN = 123) ?

● Simplest case
● Each relation is mapped to a file
● A file contains a sequence of records
● Each record corresponds to a logical tuple

● Next:
● How are tuples/records stored within a block ?

Fixed Length Records
● n = number of bytes per record
● Store record i at position:

● n * (i – 1)
● Records may cross blocks

● Not desirable
● Stagger so that that doesn’t happen

● Inserting a tuple ?
● Depends on the policy used
● One option: Simply append at the end of the

file. Problems?

● Deletions ?
● Option 1: Rearrange
● Option 2: Keep a free list and use for next

insert

The above assumes records not ordered.

Fixed Length Records
● Deleting: using “free lists”

Variable-length Records

● Indirection:
● The records may move inside the page, but the outside world is oblivious to it
● Why ?

● The headers are used as an indirection mechanism
● “Record ID 1000 is the 5th entry in page X”

Slotted page structure

