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Exam 1

● Regrade requests open until Friday noon.
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Buffer Manager
● When the QP wants a block, it asks the “buffer manager” 

● The block must be in memory to operate upon 
● Buffer manager: 

● If block already in memory: return a pointer to it 
● If not: 

● Evict a current page 
▪ Either write it to temporary storage, 
▪ or write it back to its original location, 
▪ or just throw it away (if it was read from disk, and not modified) 

● and make a request to the storage subsystem to fetch it

Buffer Manager
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Buffer Manager
● Similar to virtual memory manager 
● Buffer replacement policies 

● Which page to evict ? 
● LRU: Least Recently Used 

● Throw out the page that was not used in a long time 
● MRU: Most Recently Used 

● The opposite 
● If data set too big for cache, keep older pages as they might be 

accessed again before recent pages. 
● Clock ? 

● An efficient implementation of LRU
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Buffer Manager
● LRU: Least Recently Used 

● But LRU can be bad, such as when looping over array bigger than space:
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DB Needs from Buffer Manager

● Pinning a block 
● Not allowed to evict 

● Force-output (force-write) 
● Force the contents of a block to be written to disk 

● Order the writes 
● This block must be written to disk before that block 

Critical for fault tolerant guarantees 
● Otherwise database has no control over what is on disk
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File Organization
● How are the relations mapped to the disk blocks ? 

● Use a standard file system ? 
● High-end systems have their own OS/file systems 
● OS interferes more than helps in many cases 

● Mapping of relations to file ? 
● One-to-one ?  
● Advantages in storing multiple relations clustered together 

● A file is essentially a collection of disk blocks 
● How are the tuples mapped to the disk blocks ? 
● How are they stored within blocks?

File Organization
● Goals: 

● Allow insertion/deletions of tuples/records 
● Fetch a particular record (specified by record id) 
● Find all tuples that match a condition (say SSN = 123) ? 

● Simplest case 
● Each relation is mapped to a file 
● A file contains a sequence of records 
● Each record corresponds to a logical tuple 

● So…. 
● How are tuples/records stored within a block ?



Fixed Length Records
● n = number of bytes per record 
● Store record i at position:  
● Records may cross blocks 

● Not desirable 
● Stagger so that that doesn’t happen 

●  Inserting a tuple ? 
● Depends on the policy used 
● One option: Simply append at the end of the 

file. Problems?  

● Deletions ? 
● Option 1: Rearrange 
● Option 2: Keep a free list and use for next insert 

The above assumes records not ordered.

n * (i − 1)

Fixed Length Records
● Deleting: using “free lists”



Variable-length Records

● Indirection: 
● The records may move inside the page, but the outside world is oblivious to it 
● Why ? 

● The headers are used as an indirection mechanism 
● “Record ID 1000 is the 5th entry in page X”

Slotted page structure

File Organization
● Which block of a file should a record go to ? 

● Anywhere ? 
● Called “heap” organization  
● How to search for “SSN = 123” ? 

● Sorted by SSN ? 
● Called “sequential” organization 
● Keeping it sorted might be painful 
● How would you search ? 

● Based on a hash key 
● Called “hashing” organization 
● Store the record with SSN = x in the block number h(x) 
● Why ? 



Sequential File Organization
● Keep sorted by some search key 
● Insertion 

● Find the block in which the tuple should be 
● If there is free space, insert it 
● Otherwise, must create overflow pages 

● Deletions 
● Delete and keep the free space 
● Databases tend to be insert heavy, so free space gets used 

fast 
● Can become fragmented 

● Must reorganize once in a while

Sequential File Organization
● What if I want to find a particular record by value ? 

● Account info for SSN = 123 
● Binary search 

● Takes ceiling(log2(n)) number of disk accesses 
● These are random accesses 

● Too much 
● n = 1,000,000,000, log2(n) = 30 
● Assume each random access approx 5 ms 
● 150 ms to find just one account information 
● < 7 requests satisfied per second



Hash-based File Organization

Store record with search key k 
in block number h(k)  

e.g. for a person file, 
       h(SSN) = SSN % 4 

Blocks are the buckets 

What if the block becomes full ? 
      Overflow pages 

Uniformity property: 
    Don’t want all tuples to map to  
        the same bucket 
    h(SSN) = SSN % 2 would be bad 

No index needed 
No reasonable range queries

(1000, “A”,…) 
(200, “B”,…) 
(4044, “C”, …)

(401, “Ax”,…) 
(21, “Bx”,…) 

(1002, “Ay”,…) 
(10, “By”,…) 

(1003, “Az”,…) 
(35, “Bz”,…) 

Block 0

Block 1

Block 2

Block 3

Buckets

(as opposed to sequential file organization)

Hashed on “branch-name” 

Hash function: 
     a = 1, b = 2, .., z = 26 
     h(abz)  
        = (1 + 2 + 26) % 10 
        = 9

Hash-based File Organization
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Index
● A data structure for efficient search through large databases 
● Two key ideas: 

● The records are mapped to the disk blocks in specific ways 
● Sorted, or hash-based 

● Auxiliary data structures are maintained that allow quick search 
● Think library index/catalogue 

● Search key: 
● Attribute or set of attributes used to look up records in indexes 
● E.g. SSN for a persons table 
● Can be different from candidate or primary keys 

● Two main types of indexes 
● Ordered indexes 
● Hash-based indexes 



Ordered Indexes
● We assume ordered indexes are sorted by search key  
● Primary (“clustered”) indexes 

● File ordering = search key 
● Can have only one primary index on a relation  

● Secondary (“nonclustered) index 
● File ordering != search key 

● dense means every search value has an index entry


