
Outline
● Storage hierarchy
● Disks
● RAID
● Spark
● Buffer Manager
● File Organization
● Indexes
● B+-Tree Indexes
● Etc..

Exam 1

● Regrade requests open until Friday noon.

rank

total part

weak

final schem
a

RA agg

Buffer Manager
● When the QP wants a block, it asks the “buffer manager”

● The block must be in memory to operate upon
● Buffer manager:

● If block already in memory: return a pointer to it
● If not:

● Evict a current page
▪ Either write it to temporary storage,
▪ or write it back to its original location,
▪ or just throw it away (if it was read from disk, and not modified)

● and make a request to the storage subsystem to fetch it

Buffer Manager

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Buffer Manager
● Similar to virtual memory manager
● Buffer replacement policies

● Which page to evict ?
● LRU: Least Recently Used

● Throw out the page that was not used in a long time
● MRU: Most Recently Used

● The opposite
● If data set too big for cache, keep older pages as they might be

accessed again before recent pages.
● Clock ?

● An efficient implementation of LRU

a b c d e f d e f

Buffer Manager
● LRU: Least Recently Used

● But LRU can be bad, such as when looping over array bigger than space:

A B A B C B A F
 A B A B C B A

m
iss

m
iss

m
iss

m
iss

m
iss

A B A B C B A Finput

buffers

A A A A A A A A A A
 B B B B B B B B B
 C D D D C D D Dm

iss

m
iss

m
iss

m
iss

m
iss

m
iss

MRU
A B C D A B C D A Binput

buffers A B C D A B C D A B
 A B C D A B C D A
 A B C D A B C D

m
iss

m
iss

m
iss

m
iss

m
iss

m
iss

LRU
A B C D A B C D A Binput

buffers

m
iss

m
iss

m
iss

m
iss

DB Needs from Buffer Manager

● Pinning a block
● Not allowed to evict

● Force-output (force-write)
● Force the contents of a block to be written to disk

● Order the writes
● This block must be written to disk before that block

Critical for fault tolerant guarantees
● Otherwise database has no control over what is on disk

Outline
● Storage hierarchy
● Disks
● RAID
● Spark
● Buffer Manager
● File Organization
● Indexes
● B+-Tree Indexes
● Etc..

File Organization
● How are the relations mapped to the disk blocks ?

● Use a standard file system ?
● High-end systems have their own OS/file systems
● OS interferes more than helps in many cases

● Mapping of relations to file ?
● One-to-one ?
● Advantages in storing multiple relations clustered together

● A file is essentially a collection of disk blocks
● How are the tuples mapped to the disk blocks ?
● How are they stored within blocks?

File Organization
● Goals:

● Allow insertion/deletions of tuples/records
● Fetch a particular record (specified by record id)
● Find all tuples that match a condition (say SSN = 123) ?

● Simplest case
● Each relation is mapped to a file
● A file contains a sequence of records
● Each record corresponds to a logical tuple

● So….
● How are tuples/records stored within a block ?

Fixed Length Records
● n = number of bytes per record
● Store record i at position:
● Records may cross blocks

● Not desirable
● Stagger so that that doesn’t happen

● Inserting a tuple ?
● Depends on the policy used
● One option: Simply append at the end of the

file. Problems?

● Deletions ?
● Option 1: Rearrange
● Option 2: Keep a free list and use for next insert

The above assumes records not ordered.

n * (i − 1)

Fixed Length Records
● Deleting: using “free lists”

Variable-length Records

● Indirection:
● The records may move inside the page, but the outside world is oblivious to it
● Why ?

● The headers are used as an indirection mechanism
● “Record ID 1000 is the 5th entry in page X”

Slotted page structure

File Organization
● Which block of a file should a record go to ?

● Anywhere ?
● Called “heap” organization
● How to search for “SSN = 123” ?

● Sorted by SSN ?
● Called “sequential” organization
● Keeping it sorted might be painful
● How would you search ?

● Based on a hash key
● Called “hashing” organization
● Store the record with SSN = x in the block number h(x)
● Why ?

Sequential File Organization
● Keep sorted by some search key
● Insertion

● Find the block in which the tuple should be
● If there is free space, insert it
● Otherwise, must create overflow pages

● Deletions
● Delete and keep the free space
● Databases tend to be insert heavy, so free space gets used

fast
● Can become fragmented

● Must reorganize once in a while

Sequential File Organization
● What if I want to find a particular record by value ?

● Account info for SSN = 123
● Binary search

● Takes ceiling(log2(n)) number of disk accesses
● These are random accesses

● Too much
● n = 1,000,000,000, log2(n) = 30
● Assume each random access approx 5 ms
● 150 ms to find just one account information
● < 7 requests satisfied per second

Hash-based File Organization

Store record with search key k
in block number h(k)

e.g. for a person file,
 h(SSN) = SSN % 4

Blocks are the buckets

What if the block becomes full ?
 Overflow pages

Uniformity property:
 Don’t want all tuples to map to
 the same bucket
 h(SSN) = SSN % 2 would be bad

No index needed
No reasonable range queries

(1000, “A”,…)
(200, “B”,…)
(4044, “C”, …)

(401, “Ax”,…)
(21, “Bx”,…)

(1002, “Ay”,…)
(10, “By”,…)

(1003, “Az”,…)
(35, “Bz”,…)

Block 0

Block 1

Block 2

Block 3

Buckets

(as opposed to sequential file organization)

Hashed on “branch-name”

Hash function:
 a = 1, b = 2, .., z = 26
 h(abz)
 = (1 + 2 + 26) % 10
 = 9

Hash-based File Organization

Outline
● Storage hierarchy
● Disks
● RAID
● Spark
● Buffer Manager
● File Organization
● Indexes
● B+-Tree Indexes
● Etc..

Index
● A data structure for efficient search through large databases
● Two key ideas:

● The records are mapped to the disk blocks in specific ways
● Sorted, or hash-based

● Auxiliary data structures are maintained that allow quick search
● Think library index/catalogue

● Search key:
● Attribute or set of attributes used to look up records in indexes
● E.g. SSN for a persons table
● Can be different from candidate or primary keys

● Two main types of indexes
● Ordered indexes
● Hash-based indexes

Ordered Indexes
● We assume ordered indexes are sorted by search key
● Primary (“clustered”) indexes

● File ordering = search key
● Can have only one primary index on a relation

● Secondary (“nonclustered) index
● File ordering != search key

● dense means every search value has an index entry

