
Outline

● Storage hierarchy
● Disks
● RAID
● Spark
● Buffer Manager
● File Organization
● Indexes
● B+-Tree Indexes
● Etc..

Index
● A data structure for efficient search through large databases
● Two key ideas:

● The records are mapped to the disk blocks in specific ways
● Sorted, or hash-based

● Auxiliary data structures are maintained that allow quick search
● Think library index/catalogue

● Search key:
● Attribute or set of attributes used to look up records in indexes
● E.g. SSN for a persons table
● Can be different from candidate or primary keys

● Two main types of indexes
● Ordered indexes
● Hash-based indexes

Ordered Indexes
● We assume ordered indexes are sorted by search key
● Primary (“clustered”) indexes

● File ordering = search key
● Can have only one primary index on a relation

● Secondary (“nonclustered) index
● File ordering != search key

● dense means every search value has an index entry

Primary Sparse Index
● Index doesn’t need every key

● Allows for very small indexes
● Better chance of fitting in memory
● Tradeoffs?

● Some amount of in-memory search
● Must access the relation file even if the record is not present

Secondary Index
● Relation sorted on branch (not search key)
● But we want an index on balance
● Must be dense

Multi-level Indexes
● What if the index itself is too big for

memory?

● Assume:
● relation size = 1,000,000,000:
● block size = 100 tuples

● Then:
● number of pages = 10,000,000
● 16 bytes/entry is 120 MB for index
● This is too much…

● Solution
● Build an index on the index itself

al
wa

ys
 in

 m
em

or
y

NO
T
al
wa

ys
 in

 m
em

or
y

Multi-level Indexes
● How do you search through a multi-level index ?
● Same search keys

Multi-level Indexes
● What about keeping the index up-to-date ?

● Tuple insertions and deletions
● Need to modify index as data is modified
● This is a static structure
● Need overflow pages to deal with insertions

● Works well if no inserts/deletes
● Not so good when inserts and deletes are common

Hash Indexes
Extends the basic idea

Search:
 Find the bucket with search key
 Search the bucket
 Follow the pointer

Range search ?
 a < X < b ?

Must be dense.

Often used for secondary
indexes.

overflow bucket

Hash Indexes
● Very fast search on equality
● Can’t do range searches at all

● Must scan the file
● Inserts/Deletes

● Overflow pages can degrade the performance
● Two approaches

● Dynamic hashing (rehashing using new hash alg)
● Extendible hashing (rehashing using more hash bits (trie))

● bucket at a time can be extended (rehashed w/ more bits)

Grid Files
Multidimensional index structure
Can handle range queries:

branch = “pox” and balance = 2002
branch >= “Central” and balance < 5000

Stores pointers to tuples with :
 branch between Mianus
 and Perryridge
 and balance < 1k

Outline

● Storage hierarchy
● Disks
● RAID
● Spark
● Buffer Manager
● File Organization
● Indexes
● B+-Tree Indexes
● Etc..

Example B+-Tree Index
Index

B+-Tree Node Structure
● Typical node

● Ki are the search-key values
● Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).
● The search-keys in a node are ordered
 K1 < K2 < K3 < . . . < Kn–1

● Height is #edges from leaf to root

Example B+-Tree Index
Index

● n = 3 (at most 3 ptrs)
● each interior node can have up to n children
● each leaf can have up to n-1 keys

● h = 2 (height)

● It is balanced
● Every path from the root to a leaf is same length

● Leaf nodes (at the bottom)
● P1 contains the pointers to tuple(s) with key K1
● …
● Pn is a pointer to the next leaf node
● Up to n-1 key values
● Must contain at least key values

● n=4 implies at most 4 pointers, up to 3 values, minimum of 2 values

Properties of B+-Trees

Properties
● Interior nodes

● All tuples in the subtree pointed to by Pi, have search key < Ki
● To find a tuple with key Kj’ < Ki, follow Pi
● Contains:

● at most n pointers
● at least pointers (unless root)

