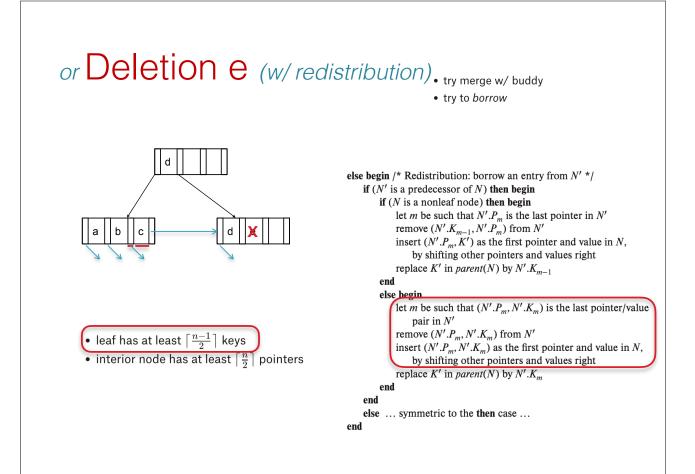
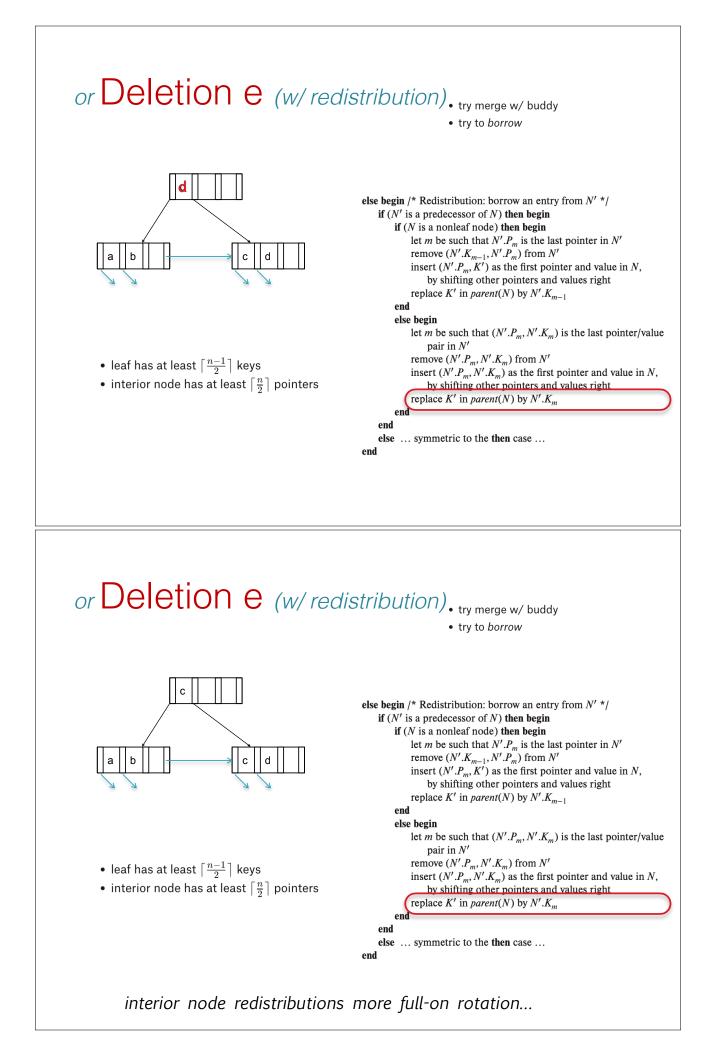
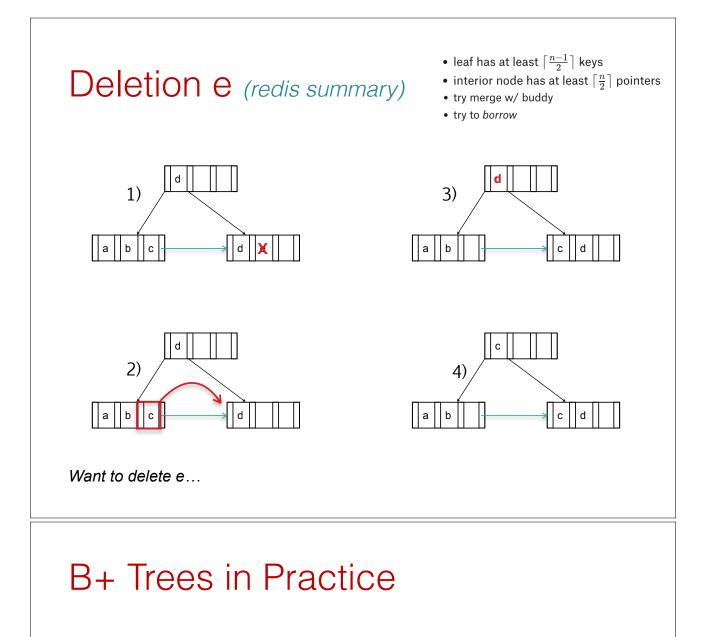
## Outline

- Storage hierarchy
- Disks
- RAID
- Spark
- Buffer Manager
- File Organization
- Indexes
- B+-Tree Indexes
- Etc..







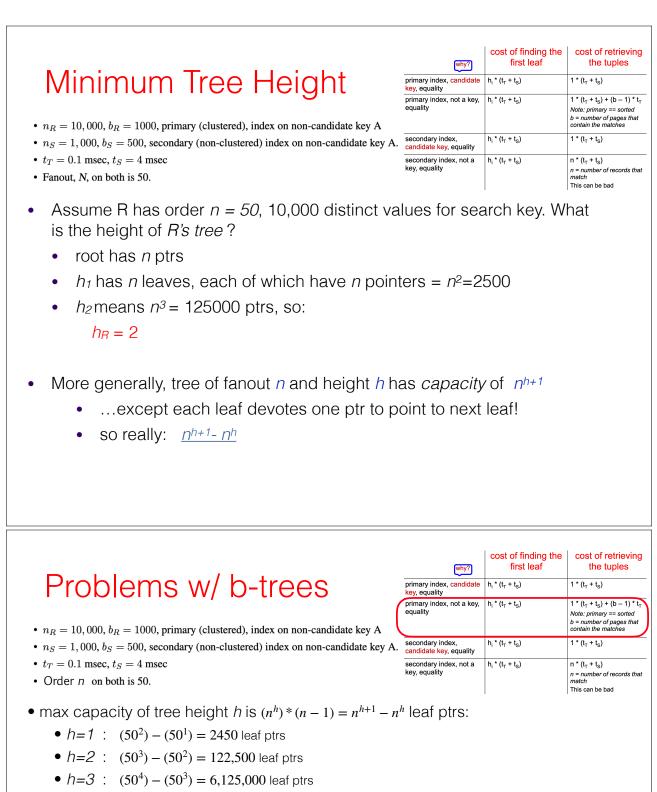
- Typical order: n = 200. Typical fill-factor: 67%.
  - average fanout = 133
- Typical capacities if we assume fanout 100:
  - Height 3: 100<sup>3</sup> =
    - 1,000,000 leafs
    - 99,000,000 entries (ptrs in leaves)
- Can often hold top levels in buffer pool:
  - Level 1 = 1 page = 8 Kbytes. (root)
  - Level 2 = 133 pages = 1 Mbyte
  - Level 3 = 17,689 pages = 133 MBytes

#### Observations about B+-trees (minimum)

- Since the inter-node connections are done by pointers, "logically" close blocks need not be "physically" close.
- The non-leaf levels of the B+-tree form a hierarchy of sparse indices.
- The B+-tree contains a relatively small number of levels
  - Level below root has at least  $2 * \left| \frac{n}{2} \right|$  ptrs height=1
  - Next level has at least  $2 * \left[\frac{n}{2}\right] * \left[\frac{n}{2}\right]$  ptrs height=2
  - Height *i* tree has at least  $2 * \left[\frac{n}{2}\right]^{t}$  ptrs
  - If there are K search-key values in the file, the tree height (dist from root to leaf) is: h = [log<sub>n</sub>(K)]
- Insertions and deletions to the main file can be handled efficiently, as the index can be restructured in logarithmic time.

# B+ Trees: Summary

- Searching:
  - $\log_n(e)$  Where *n* is the order, and *e* is the number of entries
- Insertion:
  - Find the leaf to insert into
  - If full, split the node, and adjust index accordingly
  - Similar cost as searching
- Deletion
  - Find the leaf node
  - Delete
  - May not remain half-full; must adjust the index accordingly



- $h_R = 2, h_S = 1$
- Cost to return first tuple for R.A = 42?
  - primary, not a candidate key
  - must traverse tree, reading in each block except root, and one table block
  - $(h_R + 1)^* (t_T + t_S) = 3^*(0.1 + 4.0) = 12.3 \text{ msec}$
- Cost to return the rest, assuming *blocking factor* is 10, and 100 total matches?
  - (*b*-1) \* *t*<sub>7</sub> = 9 \* 0.1 = 0.9 msecs

blocking factor = #tuples / block

# Cost of find<br/>first leProblems w/ b-trees $v^*(r_r + t_s)$ $n_R = 10,000, b_R = 1000, primary (clustered), index on non-candidate key A<math>n_s = 1,000, b_S = 500$ , secondary (non-clustered) index on non-candidate key A $n_S = 1,000, b_S = 500$ , secondary (non-clustered) index on non-candidate key A $v_r = 0.1 \text{ msec}, t_S = 4 \text{ msec}$ $v_T = 0.1 \text{ msec}, t_S = 4 \text{ msec}$ $v_r = 0.1 \text{ msec}, t_S = 4 \text{ msec}$ $v_T = 0.1 \text{ msec}, t_S = 4 \text{ msec}$ $v_r = 0.1 \text{ msec}, t_S = 4 \text{ msec}$

- Cost to return first tuple for S.A = 42?
  - secondary, not a candidate key
  - $(h_S + 1)^* (t_T + t_S) = 2^*(0.1 + 4.0) = 8.2 \text{ msec}$
- Cost to return the rest, assuming *blocking factor* is 10, and 100 total matches?
  - $(#numMatches 1) * t_T = 99 * (0.1 + 4.0) = 396 + 9.9 = 405.9 \text{ msecs}$

Blocking factor is irrelevant because matches are randomly scattered.

blocking factor = #tuples / block

#### Query Processing

- Overview
- Selection operation
- Join operators
- Sorting
- Other operators
- Putting it all together...

|    | why?                                        | cost of finding the first leaf | cost of retrieving<br>the tuples                                                                                                                                                       |
|----|---------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | primary index, candidate key, equality      | $h_{i} * (t_{T} + t_{S})$      | 1 * (t <sub>T</sub> + t <sub>S</sub> )                                                                                                                                                 |
|    | primary index, not a key,<br>equality       | $h_i \star (t_T + t_S)$        | $\begin{array}{l} 1 & (t_{T} + t_{S}) + (b - 1) & t_{T} \\ \textit{Note: primary} == \textit{sorted} \\ b = \textit{number of pages that} \\ \textit{contain the matches} \end{array}$ |
| Α. | secondary index,<br>candidate key, equality | $h_{i} * (t_{T} + t_{S})$      | 1 * (t <sub>T</sub> + t <sub>S</sub> )                                                                                                                                                 |
|    | secondary index, not a key, equality        | $h_{i} * (t_{T} + t_{S})$      | $n * (t_T + t_S)$<br>n = number of records that match<br>This can be bad                                                                                                               |

#### **Query Processing**

- Overview
- Selection operation
- Join operators
- Sorting
- Other operators
- Putting it all together...

#### Join

- select \* from R, S where R.a = S.a
  - "equi-join"
- select \* from R, S where |R.a S.a | < 0.5
  - not an equi-join
- Option 1: <u>Nested-loops</u>
  - for each tuple r in R
    - for each tuple s in S

check if r.a = s.a (or whether |r.a - s.a| < 0.5)

- Can be used for any join condition
  - As opposed to some algorithms we will see later
- R called *outer relation*
- S called inner relation

#### Nested-loops Join

not using indexes

- Cost ? Depends on the actual values of parameters, especially memory
- $b_r, b_s \rightarrow$  Number blocks of R and S
- $n_r$ ,  $n_s \rightarrow$  Number tuples of R and S
- Case 1: Minimum memory required = 3 blocks
  - One to hold the current *R* block, one for current S block, one for the result being produced
  - Blocks transferred:
    - Must scan *R* tuples once: *b*<sub>r</sub> blocks
    - For each *R* tuple, must scan *S*:  $n_r * b_s$
    - $b_r + n_r * b_s$
  - Seeks ?
    - $n_r + b_r$

#### Nested-loops Join

- <u>Case 1: Minimum memory required = 3 blocks</u>
  - Blocks transferred:  $n_r * b_s + b_r$
  - Seeks:  $n_r + b_r$
- Example:
  - Number of records -- R:  $n_r = 10,000, S: n_s = 5000$
  - Number of blocks --  $R: b_r = 400$ ,  $S: b_s = 100$
- R as outer relation:
  - blocks transferred:  $n_r * b_s + b_r = 10000 * 100 + 400 = 1,000,400$
  - seeks: 10400
  - time: 1000400  $t_7$  + 10400  $t_8$  = 1000400(.1ms) + 10400(4ms) = 141.64 sec
- S outer relation:
  - 5000 \* 400 + 100 = 2,000,100 block transfers,
  - 5100 seeks
  - = 2000100  $t_T$  + 5100  $t_S$  = 220.41 sec

#### Order matters!

#### Nested-loops Join

- Case 2: S fits in memory
  - Blocks transferred:  $b_s + b_r$
  - Seeks: 2
- Example:
  - Number of records -- R:  $n_r = 10,000, S: n_s = 5000$
  - Number of blocks --  $R: b_r = 400$ ,  $S: b_s = 100$
- Then:
  - blocks transferred: 400 + 100 = 500
  - seeks: 2
  - =  $500t_T + 2t_S = 0.058$  sec

Orders of magnitude difference

#### **Block Nested-loops Join**

 $n_r = 10,000, S: n_s = 5000$  $b_r = 400, S: b_s = 100$ 

Simple modification to "nested-loops join"

for each block  $B_r$  in R

for each block  $B_s$  in S

for each tuple r in  $B_r$ 

```
for each tuple s in B_s
```

check if r.a = s.a (or whether |r.a - s.a| < 0.5)

- Case 1: Minimum memory required = 3 blocks
  - Blocks transferred:  $b_r * b_s + b_r$
  - Seeks: 2 \* *b*<sub>r</sub>
- For the example:
  - blocks: 400\*100 + 400 = 40,400 msec = 40.4 sec
  - seeks: 800\*4 = 3200 msec = 3.2 sec
  - 43.6 seconds

#### Block Nested-loops Join

 $n_r = 10,000, S: n_s = 5000$  $b_r = 400, S: b_s = 100$ 

- <u>Case 1: Minimum memory required = 3 blocks</u>
  - Blocks transferred:  $b_r * b_s + b_r$
  - Seeks: 2 \* *b*<sub>r</sub>
- Case 2: S fits in memory
  - Blocks transferred:  $b_s + b_r$
  - Seeks: 2
- What about in between ?
  - Say there are 50 blocks, but S is 100 blocks
  - Why not use all the memory that we can...



 $n_r = 10,000, S: n_s = 5000$  $b_r = 400, S: b_s = 100$ 

- 48 blocks for R
- 1 block for S
- 1 block for output

• Why is this good ?

- We only have to read S a total of  $ceiling(b_r/48)$  times (instead of  $b_r$  times)
- Blocks transferred:

 Case 3: 50 blocks (S = 100 blocks) for each group of 48 blocks in R for each block B<sub>s</sub> in S

for each tuple s in B

for each tuple r in the group of 48 blocks

• 
$$\left\lceil \frac{b_r}{48} \right\rceil^* b_s + b_r = \left\lceil \frac{400}{48} \right\rceil^* 100 + 400 = 1300$$
  
• Seeks:

check if r.a = s.a (or whether |r.a - s.a| < 0.5)

$$2*\left\lceil\frac{b_r}{48}\right\rceil = 18$$

- 1300 \* 0.1 + 18 \* 4 = 130 msec + 72 msec = 0.202 seconds
- Use S as the outer relation:
  - Blocks transferred:

• 
$$\left\lceil \frac{b_s}{48} \right\rceil^* b_r + b_s = \left\lceil \frac{100}{48} \right\rceil^* 400 + 100 = 1300$$
  
• Seeks:

$$2*\left\lceil\frac{b_s}{48}\right\rceil = 6$$

• 1300 \* 0.1 + 6 \* 4 = 130 msec + 24 msec = <u>0.154 seconds</u>

#### So far...

- Block Nested-loops join
  - Can always be applied irrespective of the join condition
  - If the smaller relation fits in memory, then cost:
    - b<sub>r</sub> + b<sub>s</sub>
    - This is the best we can hope if we have to read the relations once each
  - CPU cost of the inner loop is high...

#### Index Nested-loops Join

- "select \* from R, S where R.a = S.a"
  - equi-join
- Nested-loops

for each tuple r in R

for each tuple s in S

check if r.a = s.a (or whether |r.a - s.a| < 0.5)

• If index on S.a, why not use the index instead of the inner loop ?

for each tuple r in R

use the index to find S tuples with S.a = r.a

### Index Nested-loops Join

- select \* from R, S where R.a = S.a
  - Called an "equi-join"
- Why not use the index instead of the inner loop ? for each tuple r in R
  - use the index to find S tuples with S.a = r.a
- Cost of the join:
  - $b_r(t_T + t_S) + n_r * C$
  - c == the cost of index access
    - Computed using the formulas discussed earlier