Outline

B+-Tree Indexes
Etc..

orDeletion e (w/ redistribution)

NN N N

G leaf has at least [251] keys )
« interior node has at least [ % | pointers

e try merge w/ buddy
e try to borrow

else begin /* Redistribution: borrow an entry from N’ */
if (V' is a predecessor of N) then begin
if (N is a nonleaf node) then begin
let m be such that N’.P,, is the last pointer in N’
remove (N'.K,,_;,N'.P,) from N’
insert (N'.P,,, K") as the first pointer and value in N,
by shifting other pointers and values right
replace K’ in parent(N) by N’ K,,_,
end
else

let m be such that (N'.P,,, N'.K,,) is the last pointer/value

pair in N’
remove (N'.P,,, N’ .K,,) from N’
insert (N'.P,,, N'.K,,) as the first pointer and value in N,
by shifting other pointers and values right

replace K’ in parent(N) by N’ .K,,,
end

end

else ... symmetric to the then case ...
end




orDeletion e (w/ redistribution)

N\ NN\

* leaf has at least [ 2;1] keys
* interior node has at least [ % | pointers

e try merge w/ buddy
o try to borrow

else begin /* Redistribution: borrow an entry from N’ */
if (V' is a predecessor of N) then begin
if (N is a nonleaf node) then begin
let m be such that N’.P,, is the last pointer in N’
remove (N'.K,,_;,N'.P,) from N’
insert (N'.P,,, K") as the first pointer and value in N,
by shifting other pointers and values right
replace K’ in parent(N) by N’ .K,,_,
end
else begin
let m be such that (N'.P,,, N'.K,,) is the last pointer/value
pair in N’
remove (N'.P,,, N’ .K,,) from N’
insert (N'.P,,, N'.K,,) as the first pointer and value in N,

( replace K’ in parent(N) by N’ .K,,, )

end
end
else

end

... symmetric to the then case ...

orDeletion e (w/ redistribution)

N\ NN\

* leaf has at least [ 2;1] keys
* interior node has at least [ % | pointers

interior node redistributions

e try merge w/ buddy
e try to borrow

else begin /* Redistribution: borrow an entry from N’ */
if (V' is a predecessor of N) then begin
if (N is a nonleaf node) then begin
let m be such that N’.P,, is the last pointer in N’
remove (N'.K,,_;,N'.P,) from N’
insert (N'.P,,, K") as the first pointer and value in N,
by shifting other pointers and values right
replace K’ in parent(N) by N’ K,,_,
end
else begin
let m be such that (N'.P,,, N'.K,,) is the last pointer/value
pair in N’
remove (N'.P,,, N’ .K,,) from N’
insert (N'.P,,, N'.K,,) as the first pointer and value in N,

( replace K’ in parent(N) by N’ .K,,, )

end
end
else

end

... symmetric to the then case ...

more full-on rotation...




* leaf has at least [ 251 ] keys
I . * interior node has at least [ 2 | pointers
Deletion e (redis summary) 2
e try to borrow

d d
1) \ 3) \
al|lb||c d| X allb c||d
d c
2) \ 4) \
al|lb]|c d allb c||d

Want to delete e...

B+ Trees in Practice

 Typical order: n = 200. Typical fill-factor: 67%.

« average fanout = 133

o Typical capacities if we assume fanout 100:
» Height 3: 1003 =
« 1,000,000 leafs
» 99,000,000 entries (ptrs in leaves)
e Can often hold top levels in buffer pool:
o Levell1= 1 page = 8 Kbytes. (root)
o Level 2 = 133 pages = 1 Mbyte
» Level 3 = 17,689 pages = 133 MBytes




Observations about B+-trees (minimum)

e Since the inter-node connections are done by pointers, “logically”
close blocks need not be “physically” close.

e The non-leaf levels of the B+-tree form a hierarchy of sparse indices.
o The B+-tree contains a relatively small number of levels

. Level below root has at least 2 * [g] ptrs height=1

n

Next level has at least 2 * [5] * B] ptrs height=2

n

Height / tree has at least 2 * [5] ptrs

 |f there are K search-key values in the file, the tree height (dist
from root to leaf) is: h = [log,(K)|

» Insertions and deletions to the main file can be handled efficiently,
as the index can be restructured in logarithmic time.

B+ Trees: Summary

e Searching:
« log,(e)— Where nis the order, and e is the number of entries

e [nsertion:
» Find the leaf to insert into
« If full, split the node, and adjust index accordingly
» Similar cost as searching
e Deletion
» Find the leaf node
* Delete
» May not remain half-full; must adjust the index accordingly




Minimum Tree Height

* ng = 10,000, bg = 1000, primary (clustered), index on non-candidate key A

* ng = 1,000, bs = 500, secondary (non-clustered) index on non-candidate key A.
e tp = 0.1 msec, tg = 4 msec

¢ Fanout, N, on both is 50.

cost of finding the

cost of retrieving

first leaf the tuples
primary index, candidate |h; * (t; + ts) 1*(tr+ 1)
key, equality
primary index, nota key, |h;* (t; +ts) 1T*(tr+tg)+(b—-1)*t;
equality Note: primary == sorted
b = number of pages that
contain the matches
secondary index, h* (tr + t5) 1% (tr +t5)
candidate key, equality
secondary index, not a h* (tr + ) n*(t; +ts)

key, equality

n = number of records that
match
This can be bad

e Assume R has order n = 50, 10,000 distinct values for search key. What

is the height of R’s tree ?
e root has nptrs

* hyhas nleaves, each of which have n pointers = n?=2500

e homeans n3= 125000 ptrs, so:
hr=2

» More generally, tree of fanout n and height h has capacity of nh+1

e ...except each leaf devotes one ptr to point to next leaf!

e soreally: nhi*1-nh

Problems w/ b-trees

* ng = 10,000, bg = 1000, primary (clustered), index on non-candidate key A

* ng = 1,000, bs = 500, secondary (non-clustered) index on non-candidate key A.
e t7 = 0.1 msec, ts = 4 msec

* Order n on both is 50.

cost of finding the

cost of retrieving

first leaf the tuples
primary index, candidate |h; * (t; + ts) 1*(tr+ 1)
key, equality
primary index, nota key, |h;* (t; +ts) 1T*(tr+tg) +(b—-1)*t;
equality Note: primary == sorted
b = number of pages that
contain the matches
secondary index, h* (tr + t5) 1% (tr +t5)
candidate key, equality
secondary index, not a h* (t + ) n*(t; +ts)

key, equality

e max capacity of tree height his (n")* (n — 1) = n"*' — n" leaf ptrs:

e h=1 : (50% — (50! = 2450 leaf ptrs

e h=2 : (50% — (50%) = 122,500 leaf ptrs
e h=3 : (50 — (50%) = 6,125,000 leaf ptrs
o« hp=2hg=1

e Cost to return first tuple for R.A =427
e primary, not a candidate key

n = number of records that
match
This can be bad

e must traverse tree, reading in each block except root, and one table block

e (hr+ 1) *(tr+ ts) = 3*(0.1 + 4.0) = 12.3 msec

« Cost to return the rest, assuming blocking factor is 10, and 100 total matches?

e (b-1) *tr=9*0.1=0.9 msecs

blocking factor = #tuples / block




Problems w/ b-trees

* ng = 10,000, bg = 1000, primary (clustered), index on non-candidate key A

* ng = 1,000, bs = 500, secondary (non-clustered) index on non-candidate key A.

e t7 = 0.1 msec, tg = 4 msec
* Order n onboth is 50.

e Cost to return first tuple for S.A =427
e secondary, not a candidate key

cost of finding the

cost of retrieving

first leaf the tuples

primary index, candidate |h; * (t; + ts) 1*(tr+ 1)
key, equality
primary index, nota key, |h;* (t; +ts) 1T*(tr+tg)+(b—-1)*t;
equality Note: primary == sorted

b = number of pages that

contain the matches
secondary index, h* (tr + t5) 1% (tr +t5)
candidate key, equality

hi* (tr +ts)

secondary index, not a
key, equality

n*(tr+ts)

n = number of records that
match

This can be bad

e (hs+ 1) *(tr+ ts) = 2%(0.1 + 4.0) = 8.2 msec

e (Cost to return the rest, assuming blocking factor is 10, and 100 total

matches?

e (#numMatches - 1) *tr=99* (0.1 + 4.0) = 396 + 9.9 = 405.9 msecs

Blocking factor is irrelevant because matches are randomly scattered.

blocking factor = #tuples / block

Query Processing

e QOverview

Selection operation
Join operators

Sorting

Other operators
Putting it all together...




Query Processing

Overview

Selection operation
Join operators

Sorting

Other operators
Putting it all together...

Join

select * from R, S where R.a = S.a

« “equi-join”

select * from R, S where |R.a—-S.a | < 0.5
* not an equi-join

Option 1: Nested-loops

for each tuple r in R
for each tuple s in S
check ifra = s.a (or whether |ra-s.a| < 0.5)
Can be used for any join condition
» As opposed to some algorithms we will see later
R called outer relation
S called inner relation




Nested-loops Join

not using indexes

o (Cost ? Depends on the actual values of parameters, especially memory

e b,, by> Number blocks of R and S
e n,,ng> Numbertuples of Rand S

e (Case 1: Minimum memory required = 3 blocks
» One to hold the current R block, one for current S block, one for the result being
produced

» Blocks transferred:
Must scan R tuples once: b, blocks
For each Rtuple, must scan S: n, * b,
br+ n, * by

*  Seeks?

. I’]r+b,

Nested-loops Join

e Case 1: Minimum memory required = 3 blocks

. Blocks transferred: n, = b, + b,
. Seeks:n, +b,
¢  Example:
o Number of records -- R: n, = 10,000, S: n, = 5000
o Number of blocks -- R: b, =400, S:b,= 100
[ as outer relation:
«  blocks transferred: n, * b, + b, = 10000 * 100 + 400 = 1,000,400
- seeks: 10400
. time: 1000400 t; + 10400 t5 = 1000400(.1ms) + 10400(4ms) = 141.64 sec

e Souter relation:
« 5000 * 400 + 100 = 2,000,100 block transfers,
« 5100 seeks
. =2000100 t; + 5100 tg = 220.41 sec

Order matters!




Nested-loops Join

e (Case 2: Sfits in memory

- Blocks transferred: b, + b,
« Seeks: 2
e Example:
« Number of records -- R: n, = 10,000, S: n, = 5000
« Number of blocks - R: b, =400, S:b,= 100
e Then:

» blocks transferred: 400 + 100 = 500
° seeks: 2
« =500t; + 2t; = 0.058 sec

Orders of magnitude difference

Block Nested-loops Join

» Simple modification to “nested-loops join”
for each block B, in R
for each block B in S
for each tuple rin B,
for each tuple s in B,

check ifra = s.a (or whether |ra -s.a| < 0.5)

e (Case 1: Minimum memory required = 3 blocks

« Blocks transferred: b, = by + b,
« Seeks: 2" b,
e For the example:
* blocks: 400100 + 400 = 40,400 msec = 40.4 sec

¢ seeks: 800*4 = 3200 msec = 3.2 sec
e 43.6 seconds

n, = 10,000, S: n, = 5000
b, =400, S:b, =100




n, = 10,000, S: n, = 5000

Block Nested-loops Join

e Case 1: Minimum memory required = 3 blocks

o Blocks transferred: b, = by + b,

o Seeks:2* b,

e Case 2: S fits in memory

» Blocks transferred: b, + b,
» Seeks: 2
e What about in between 7
« Say there are 50 blocks, but Sis 100 blocks

« Why not use all the memory that we can...

n, = 10,000, S: n, = 5000

Block Nested-loops Join

o Case 3: 50 blocks (S = 100 blocks)
for each group of 48 blocks in R

for each block B, in S « 48 blocks fOf R
for each tuple r in the group of 48 blocks
for each tuple s in B, » 1 block for S
check if ra = s.a (or whether |ra-s.a| < 0.5) « 1 block for OUtpUt

e Why is this good ?
« We only have to read S a total of ceil'\ng(b,/48) times (instead of b, times)

* Blocks transferred:
b 400
. [==17b_+b =[—=—]7100+ 400 = 1300
48 ¢ ! 48
¢ Seeks:
b,
2%[—L] =18
. 2%[e]

+ 1300 *0.1 + 18 * 4 = 130 msec + 72 msec = 0.202 seconds

« Use S as the outer relation:
« Blocks transferred:
b 100
. [==1"b +b_ = [—]7400+ 100 = 1300
48 roos 48
¢ Seeks:
b,
2%[—2] =6
2%l
¢ 1300 *0.1+6*4 =130 msec + 24 msec = 0.154 seconds




So far...

e Block Nested-loops join
» Can always be applied irrespective of the join condition
« If the smaller relation fits in memory, then cost:
b, + by
This is the best we can hope if we have to read the relations once each

» CPU cost of the inner loop is high...

Index Nested-loops Join

e “select * from R, S where R.a=S.a”
* equi-join
» Nested-loops
for each tuple r in R
for each tuple sin S
check if r.a = s.a (or whether |r.a — s.a| < 0.5)
« If index on S.a, why not use the index instead of the inner loop ?
for each tuple r in R
use the index to find S tuples with S.a =r.a




Index Nested-loops Join

» (Cost of the join:
o b (t;+t5)+n,=cC
e C == the cost of index access

Computed using the formulas discussed earlier




