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● Storage hierarchy 
● Disks 
● RAID 
● Spark 
● Buffer Manager 
● File Organization 
● Indexes 
● B+-Tree Indexes 
● Etc..
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B+ Trees in Practice

● Typical order: n = 200.  Typical fill-factor: 67%. 
● average fanout = 133 

● Typical capacities if we assume fanout 100: 
● Height 3: 1003 =      

● 1,000,000 leafs 
● 99,000,000 entries (ptrs in leaves) 

● Can often hold top levels in buffer pool: 
● Level 1 =           1 page  =     8 Kbytes.   (root) 
● Level 2 =      133 pages =     1 Mbyte 
● Level 3 = 17,689 pages = 133 MBytes       



Observations about B+-trees (minimum)
● Since the inter-node connections are done by pointers, “logically” 

close blocks need not be “physically” close. 
● The non-leaf levels of the B+-tree form a hierarchy of sparse indices. 
● The B+-tree contains a relatively small number of levels 

● Level below root has at least ptrs           height=1 

● Next level has at least  ptrs            height=2 

● Height i tree has at least   ptrs 

● If there are K search-key values in the file, the tree height (dist 
from root to leaf) is:  

● Insertions and deletions to the main file can be handled efficiently, 
as the index can be restructured in logarithmic time.
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B+ Trees: Summary 
● Searching: 

● logn(e) – Where n is the order, and e is the number of entries 
● Insertion: 

● Find the leaf to insert into 
● If full, split the node, and adjust index accordingly 
● Similar cost as searching 

● Deletion 
● Find the leaf node 
● Delete 
● May not remain half-full; must adjust the index accordingly



Minimum Tree Height

● Assume R has order n = 50, 10,000 distinct values for search key. What 
is the height of R’s tree ? 
● root has n ptrs 
● h1 has n leaves, each of which have n pointers = n2=2500 
● h2 means n3 = 125000 ptrs, so: 

hR = 2 

● More generally, tree of fanout n and height h has capacity of  nh+1 
● …except each leaf devotes one ptr to point to next leaf! 
● so really:   nh+1- nh

Problems w/ b-trees

• max capacity of tree height h is  leaf ptrs: 
• h=1  :    leaf ptrs 
• h=2  :    leaf ptrs 
• h=3  :    leaf ptrs 
• ,  

• Cost to return first tuple for   R.A = 42 ? 
● primary, not a candidate key 
● must traverse tree, reading in each block except root, and one table block 
● (hR + 1) * (tT + tS) = 3*(0.1 + 4.0) = 12.3 msec 

● Cost to return the rest, assuming blocking factor is 10, and 100 total matches? 
● (b-1) * tT = 9 * 0.1 = 0.9 msecs

(nh) * (n − 1) = nh+1 − nh

(502) − (501) = 2450
(503) − (502) = 122,500
(504) − (503) = 6,125,000

hR = 2 hS = 1

Order n

blocking factor = #tuples / block



Problems w/ b-trees

• Cost to return first tuple for   S.A = 42 ? 
● secondary, not a candidate key 
● (hS + 1) * (tT + tS) = 2*(0.1 + 4.0) = 8.2 msec 

● Cost to return the rest, assuming blocking factor is 10, and 100 total 
matches? 
● (#numMatches - 1) * tT = 99 * (0.1 + 4.0) = 396 + 9.9 = 405.9 msecs 

Blocking factor is irrelevant because matches are randomly scattered.

Order n

blocking factor = #tuples / block

Query Processing
● Overview 
● Selection operation  
● Join operators 
● Sorting 
● Other operators 
● Putting it all together… 



Query Processing
● Overview 
● Selection operation  
● Join operators 
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● Putting it all together… 

Join
● select * from R, S where R.a = S.a 

● “equi-join” 
● select * from R, S where |R.a – S.a | < 0.5 

● not an equi-join 

● Option 1: Nested-loops 
        for each tuple r in R 
             for each tuple s in S 
                 check if r.a = s.a (or whether |r.a – s.a| < 0.5) 
● Can be used for any join condition 

● As opposed to some algorithms we will see later 
● R called outer relation 
● S called inner relation



Nested-loops Join
● Cost ? Depends on the actual values of parameters, especially memory 

● br , bs    Number blocks of R and S 

● nr , ns  Number tuples of R and S 

● Case 1: Minimum memory required = 3 blocks 
● One to hold the current R block, one for current S block, one for the result being 

produced 
● Blocks transferred: 

● Must scan R tuples once:            br blocks 

● For each R tuple, must scan S:   nr * bs  
● br + nr * bs  

● Seeks ? 
● nr + br

not using indexes

Nested-loops Join
● Case 1: Minimum memory required = 3 blocks 

● Blocks transferred: nr ∗ bs + br  
● Seeks: nr + br  

● Example: 
● Number of records -- R:  nr = 10,000, S: ns = 5000 
● Number of blocks --   R:  br = 400 ,     S: bs = 100 

● R as outer relation: 
● blocks transferred: nr * bs + br = 10000 * 100 + 400 = 1,000,400 

● seeks: 10400 
● time: 1000400 tT + 10400 tS = 1000400(.1ms) + 10400(4ms) = 141.64 sec 

● S outer relation: 
● 5000 * 400 + 100 = 2,000,100 block transfers,  
● 5100 seeks  
● = 2000100 tT + 5100 tS = 220.41 sec 

Order matters!



Nested-loops Join
● Case 2: S fits in memory 

● Blocks transferred: bs + br  
● Seeks: 2  

● Example: 
● Number of records -- R:  nr = 10,000, S: ns = 5000 
● Number of blocks --   R:  br = 400 ,     S: bs = 100 

● Then: 
● blocks transferred: 400 + 100 = 500 
● seeks: 2 
● = 500tT + 2tS = 0.058 sec 

Orders of magnitude difference

Block Nested-loops Join
● Simple modification to “nested-loops join”       

 for each block Br in R 
   for each block Bs in S 

          for each tuple r in Br 

              for each tuple s in Bs 

                 check if r.a = s.a (or whether |r.a – s.a| < 0.5) 

● Case 1: Minimum memory required = 3 blocks 
● Blocks transferred: br ∗ bs + br  
● Seeks: 2 * br 

● For the example: 
● blocks: 400*100 + 400 = 40,400 msec = 40.4 sec 
● seeks: 800*4 = 3200 msec = 3.2 sec 
● 43.6 seconds



Block Nested-loops Join

● Case 1: Minimum memory required = 3 blocks 
● Blocks transferred: br ∗ bs + br  
● Seeks: 2 * br 

● Case 2: S fits in memory 
● Blocks transferred: bs + br  
● Seeks: 2  

● What about in between ? 
● Say there are 50 blocks, but S is 100 blocks 
● Why not use all the memory that we can…

Block Nested-loops Join
● Case 3: 50 blocks (S = 100 blocks)  

for each group of 48 blocks in R 
   for each block Bs in S 

          for each tuple r in the group of 48 blocks 
              for each tuple s in Bs 

                 check if r.a = s.a (or whether |r.a – s.a| < 0.5) 

● Why is this good ? 
● We only have to read S a total of ceiling(br / 48) times (instead of br times) 
● Blocks transferred:  

● * bs  + br  = *100 + 400 = 1300 
● Seeks:  

●  = 18 

● 1300 * 0.1 + 18 * 4 = 130 msec + 72 msec = 0.202 seconds 

● Use S as the outer relation: 
● Blocks transferred:  

● * br  + bs  = *400 + 100 = 1300 
● Seeks:  

●  = 6   

● 1300 * 0.1 + 6 * 4 = 130 msec + 24 msec = 0.154 seconds
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● 48 blocks for R 
● 1 block for S 
● 1 block for output



So far…
● Block Nested-loops join 

● Can always be applied irrespective of the join condition 
● If the smaller relation fits in memory, then cost: 

● br + bs 
● This is the best we can hope if we have to read the relations once each 

● CPU cost of the inner loop is high…

Index Nested-loops Join

● “select * from R, S where R.a = S.a” 
● equi-join 

● Nested-loops 

        for each tuple r in R 

             for each tuple s in S 

                 check if r.a = s.a (or whether |r.a – s.a| < 0.5) 
● If index on S.a, why not use the index instead of the inner loop ? 

        for each tuple r in R 

             use the index to find S tuples with S.a = r.a



Index Nested-loops Join
● select * from R, S where R.a = S.a 

● Called an “equi-join” 
● Why not use the index instead of the inner loop ? 

        for each tuple r in R 

             use the index to find S tuples with S.a = r.a 

● Cost of the join:   
● br (tT + tS) + nr ∗ c 

● c == the cost of index access 
● Computed using the formulas discussed earlier


