
Outline

● Storage hierarchy
● Disks
● RAID
● Spark
● Buffer Manager
● File Organization
● Indexes
● B+-Tree Indexes
● Etc..

d e a b c

d

x

or Deletion e (w/ redistribution)

c d a b

d d

or Deletion e (w/ redistribution)

or Deletion e (w/ redistribution)

c d a b

c

interior node redistributions more full-on rotation…

Want to delete e…

d a b c

d

 c d a b

c

c d a b

d d

2)

3)

4)

d e a b c

d

1)

x

Deletion e (redis summary)

B+ Trees in Practice

● Typical order: n = 200. Typical fill-factor: 67%.
● average fanout = 133

● Typical capacities if we assume fanout 100:
● Height 3: 1003 =

● 1,000,000 leafs
● 99,000,000 entries (ptrs in leaves)

● Can often hold top levels in buffer pool:
● Level 1 = 1 page = 8 Kbytes. (root)
● Level 2 = 133 pages = 1 Mbyte
● Level 3 = 17,689 pages = 133 MBytes

Observations about B+-trees (minimum)
● Since the inter-node connections are done by pointers, “logically”

close blocks need not be “physically” close.
● The non-leaf levels of the B+-tree form a hierarchy of sparse indices.
● The B+-tree contains a relatively small number of levels

● Level below root has at least ptrs height=1

● Next level has at least ptrs height=2

● Height i tree has at least ptrs

● If there are K search-key values in the file, the tree height (dist
from root to leaf) is:

● Insertions and deletions to the main file can be handled efficiently,
as the index can be restructured in logarithmic time.

2 * ⌈ n
2 ⌉

2 * ⌈ n
2 ⌉ * ⌈ n

2 ⌉
2 * ⌈ n

2 ⌉
i

h = ⌈logn(K)⌉

B+ Trees: Summary
● Searching:

● logn(e) – Where n is the order, and e is the number of entries
● Insertion:

● Find the leaf to insert into
● If full, split the node, and adjust index accordingly
● Similar cost as searching

● Deletion
● Find the leaf node
● Delete
● May not remain half-full; must adjust the index accordingly

Minimum Tree Height

● Assume R has order n = 50, 10,000 distinct values for search key. What
is the height of R’s tree ?
● root has n ptrs
● h1 has n leaves, each of which have n pointers = n2=2500
● h2 means n3 = 125000 ptrs, so:

hR = 2

● More generally, tree of fanout n and height h has capacity of nh+1
● …except each leaf devotes one ptr to point to next leaf!
● so really: nh+1- nh

Problems w/ b-trees

• max capacity of tree height h is leaf ptrs:
• h=1 : leaf ptrs
• h=2 : leaf ptrs
• h=3 : leaf ptrs
• ,

• Cost to return first tuple for R.A = 42 ?
● primary, not a candidate key
● must traverse tree, reading in each block except root, and one table block
● (hR + 1) * (tT + tS) = 3*(0.1 + 4.0) = 12.3 msec

● Cost to return the rest, assuming blocking factor is 10, and 100 total matches?
● (b-1) * tT = 9 * 0.1 = 0.9 msecs

(nh) * (n − 1) = nh+1 − nh

(502) − (501) = 2450
(503) − (502) = 122,500
(504) − (503) = 6,125,000

hR = 2 hS = 1

Order n

blocking factor = #tuples / block

Problems w/ b-trees

• Cost to return first tuple for S.A = 42 ?
● secondary, not a candidate key
● (hS + 1) * (tT + tS) = 2*(0.1 + 4.0) = 8.2 msec

● Cost to return the rest, assuming blocking factor is 10, and 100 total
matches?
● (#numMatches - 1) * tT = 99 * (0.1 + 4.0) = 396 + 9.9 = 405.9 msecs

Blocking factor is irrelevant because matches are randomly scattered.

Order n

blocking factor = #tuples / block

Query Processing
● Overview
● Selection operation
● Join operators
● Sorting
● Other operators
● Putting it all together…

Query Processing
● Overview
● Selection operation
● Join operators
● Sorting
● Other operators
● Putting it all together…

Join
● select * from R, S where R.a = S.a

● “equi-join”
● select * from R, S where |R.a – S.a | < 0.5

● not an equi-join

● Option 1: Nested-loops
 for each tuple r in R
 for each tuple s in S
 check if r.a = s.a (or whether |r.a – s.a| < 0.5)
● Can be used for any join condition

● As opposed to some algorithms we will see later
● R called outer relation
● S called inner relation

Nested-loops Join
● Cost ? Depends on the actual values of parameters, especially memory

● br , bs Number blocks of R and S

● nr , ns Number tuples of R and S

● Case 1: Minimum memory required = 3 blocks
● One to hold the current R block, one for current S block, one for the result being

produced
● Blocks transferred:

● Must scan R tuples once: br blocks

● For each R tuple, must scan S: nr * bs
● br + nr * bs

● Seeks ?
● nr + br

not using indexes

Nested-loops Join
● Case 1: Minimum memory required = 3 blocks

● Blocks transferred: nr ∗ bs + br
● Seeks: nr + br

● Example:
● Number of records -- R: nr = 10,000, S: ns = 5000
● Number of blocks -- R: br = 400 , S: bs = 100

● R as outer relation:
● blocks transferred: nr * bs + br = 10000 * 100 + 400 = 1,000,400

● seeks: 10400
● time: 1000400 tT + 10400 tS = 1000400(.1ms) + 10400(4ms) = 141.64 sec

● S outer relation:
● 5000 * 400 + 100 = 2,000,100 block transfers,
● 5100 seeks
● = 2000100 tT + 5100 tS = 220.41 sec

Order matters!

Nested-loops Join
● Case 2: S fits in memory

● Blocks transferred: bs + br
● Seeks: 2

● Example:
● Number of records -- R: nr = 10,000, S: ns = 5000
● Number of blocks -- R: br = 400 , S: bs = 100

● Then:
● blocks transferred: 400 + 100 = 500
● seeks: 2
● = 500tT + 2tS = 0.058 sec

Orders of magnitude difference

Block Nested-loops Join
● Simple modification to “nested-loops join”

 for each block Br in R
 for each block Bs in S

 for each tuple r in Br

 for each tuple s in Bs

 check if r.a = s.a (or whether |r.a – s.a| < 0.5)

● Case 1: Minimum memory required = 3 blocks
● Blocks transferred: br ∗ bs + br
● Seeks: 2 * br

● For the example:
● blocks: 400*100 + 400 = 40,400 msec = 40.4 sec
● seeks: 800*4 = 3200 msec = 3.2 sec
● 43.6 seconds

Block Nested-loops Join

● Case 1: Minimum memory required = 3 blocks
● Blocks transferred: br ∗ bs + br
● Seeks: 2 * br

● Case 2: S fits in memory
● Blocks transferred: bs + br
● Seeks: 2

● What about in between ?
● Say there are 50 blocks, but S is 100 blocks
● Why not use all the memory that we can…

Block Nested-loops Join
● Case 3: 50 blocks (S = 100 blocks)

for each group of 48 blocks in R
 for each block Bs in S

 for each tuple r in the group of 48 blocks
 for each tuple s in Bs

 check if r.a = s.a (or whether |r.a – s.a| < 0.5)

● Why is this good ?
● We only have to read S a total of ceiling(br / 48) times (instead of br times)
● Blocks transferred:

● * bs + br = *100 + 400 = 1300
● Seeks:

● = 18

● 1300 * 0.1 + 18 * 4 = 130 msec + 72 msec = 0.202 seconds

● Use S as the outer relation:
● Blocks transferred:

● * br + bs = *400 + 100 = 1300
● Seeks:

● = 6

● 1300 * 0.1 + 6 * 4 = 130 msec + 24 msec = 0.154 seconds

⌈ br

48 ⌉ ⌈ 400
48 ⌉

2 * ⌈ br
48 ⌉

⌈ bs

48 ⌉ ⌈ 100
48 ⌉

2 * ⌈ bs
48 ⌉

● 48 blocks for R
● 1 block for S
● 1 block for output

So far…
● Block Nested-loops join

● Can always be applied irrespective of the join condition
● If the smaller relation fits in memory, then cost:

● br + bs
● This is the best we can hope if we have to read the relations once each

● CPU cost of the inner loop is high…

Index Nested-loops Join

● “select * from R, S where R.a = S.a”
● equi-join

● Nested-loops

 for each tuple r in R

 for each tuple s in S

 check if r.a = s.a (or whether |r.a – s.a| < 0.5)
● If index on S.a, why not use the index instead of the inner loop ?

 for each tuple r in R

 use the index to find S tuples with S.a = r.a

Index Nested-loops Join
● select * from R, S where R.a = S.a

● Called an “equi-join”
● Why not use the index instead of the inner loop ?

 for each tuple r in R

 use the index to find S tuples with S.a = r.a

● Cost of the join:
● br (tT + tS) + nr ∗ c

● c == the cost of index access
● Computed using the formulas discussed earlier

