So far...

- Block Nested-loops join
 - Can always be applied irrespective of the join condition
 - If the smaller relation fits in memory, then cost:
 - $b_r + b_s$
 - This is the best we can hope if we have to read the relations once each
 - CPU cost of the inner loop is high
 - Typically used when the smaller relation is really small (few tuples) and index nested-loops can't be used
- Index Nested-loops join
 - Only applies if an appropriate index exists
 - Very useful when we have selections that return small number of tuples
 - select balance from c, a where c.name = "j. s." and c.SSN = a.SSN

Merge-Join (Sort-merge join)

- Cost:
 - If the relations sorted, then just
 - $b_r + b_s$ block transfers, some seeks depending on memory size
 - What if not sorted ?
 - Then sort the relations first
 - In many cases, still very good performance
 - Typically comparable to hash join
- Observation:
 - The final join result will also be sorted on a1
 - Might make further operations easier
 - E.g. duplicate elimination

Merge-Join (Sort-merge join)

- Pre-condition:
 - equi-/natural joins
 - The relations must be sorted by the join attribute
 - If not sorted, can sort first, and then use this
- Called "sort-merge join" sometimes

SELECT * FROM r, s WHERE r.a1 = s.a1

Step:

- 1. Compare the tuples at p_{r} and p_{s}
- 2. Move pointers down the list
 - Depending on the join condition

Sorting short segue

- Commonly required for many operations
 - Duplicate elimination, group by's, sort-merge join
 - Queries may have ASC or DSC in the query
- One option:
 - Read the lowest level of B+-tree
 - May be enough in many cases
 - But if relation not sorted, too many random accesses
- If relation small enough...
 - Read in memory, use quicksort (qsort() in C)
- What if relation too large to fit in memory ?
 - External sort-merge

External Sort-Merge

- Divide and Conquer !!
- Let *M* denote the memory size (in blocks)

• Phase 1:

- Read first M blocks of relation, sort, and write it to disk
- Read the next M blocks, sort, and write to disk ...
- Say we have to do this "N" times
- Result: *N* sorted runs of size *M* blocks each

• Phase 2:

- Merge the *N* runs (*N*-way merge)
- Can do it in one shot if N < M
 - need one block per run, plus one block for output

External sort-merge

- Phase 1:
 - Create sorted runs of size M each
 - Result: *N* sorted runs of size *M* blocks each
- Phase 2:
 - Merge the *N* runs (*N*-way merge)
 - Can do it in one shot if N < M

• What if *N* > *M* ?

- Do it recursively
- Not expected to happen
- If *M* = 1000, can compare 1000 runs
 - (4KB blocks): can sort: 1000 runs, each of 1000 blocks, each of 4k bytes
 = 4GB of data

External Merge Sort (Cont.)

Cost analysis:

• Disk for each run needs to be read and written, so:

 $\bullet = 2b_r * (t_T + t_S)$

- Total number of merge passes required: [log_{M-1}(b_r / M)],
 - · Each pass also reads and writes entire R
- Disk for initial run creation as well as in each pass is 2b_r
 - for final pass, we don't count write cost
 - output may be *pipelined* (sent via memory to parent operation)

Thus total number of disk transfers for external sorting:

 $b_r(2[\log_{M-1}(b_r/M)] + 1)$

Seeks:

 $2[b_r/M] + [b_r/b_b](2[\log_{M-1}(b_r/M)] - 1)$

 b_b is #blocks read at a time, and how many output blocks needed. Unless otherwise specified, we assume $b_b = 1$.

Hash Join

read S in memory and build a hash index on it
for each tuple r in R
 use the hash index on S to find tuples such that S.a = r.a

Case 1: Smaller relation (S) fits in memory

• recall Nested-loops join:

for each tuple r in R for each tuple s in S

check if r.a = s.a

- Cost: $b_r + b_s$ transfers, 2 seeks
- The inner loop is not exactly cheap (high CPU cost)

Hash Join

Case 1: Smaller relation (S) fits in memory for each tuple r in R for each tuple s in S use the hash index on S to find tuples such that S.a = r.a

- Cost: $b_r + b_s$ transfers, 2 seeks (unchanged)
- Why good ?
 - CPU cost is much better
 - Much better than nested-loops join when *S* doesn't fit in memory (next)

Hash Join

Case 2: Smaller relation (S) doesn't fit in memory

- Basic idea:
 - partition tuples of each relation into sets that have same value on join attributes
 - must be equi-/natural join
- Phase 1:
 - Read *R* block by block and partition using a hash function:
 - *h*₁(*a*) // assume has *k* distinct outputs
 - Create one partition for each possible value of $h_1(a)$ (k partitions)
 - Write the partitions to disk:
 - R gets partitioned into R_1, R_2, \ldots, R_k
 - Similarly, read and partition S, and write partitions S_1, S_2, \dots, S_k to disk
 - Requirements:
 - Room for single R block, single output block for each hash value
 - Each S partition fits into remaining memory

Hash Join

- <u>Case 2: Smaller relation (S) doesn't fit in memory</u>
 - Phase 1
 - Phase 2:
 - Read S_i into memory, and build a hash index on it (S_i fits in memory)
 - Use a different hash function from the partition hash: $h_2(a)$
 - Read R_i block by block, and use the hash index to find matches.
 - Repeat for all *i*.

Hash Join

- Case 2: Smaller relation (S) doesn't fit in memory
- Two "phases":
- Phase 1:
 - Partition the relations using one hash function, $h_1(a)$
- Phase 2:
 - Read S_i into memory, and build a hash index on it (S_i fits in memory)
 - Read R_i block by block, and use the hash index to find matches.
- Cost ?

- remember, we ignore last output
- $3(b_r + b_s)$ block transfers
 - *R* or *S* might have partially full block to be read and written (ignored)
- + 2($[b_r/b_b]$ + $[b_s/b_b]$) seeks (seek count unclear)
 - Where b_b is the size of each input buffer (p 716)
- Much better than Nested-loops join under the same conditions

Hash Join: Issues

- How to guarantee that each partition of *S* fits in memory ?
 - Say S = 10,000 blocks, Memory = M = 100 blocks
 - Use a hash function that hashes to 100 different values?
 - Eg. h1(a) = a % 100 ?
 - Problem: Impossible to guarantee uniform split
 - Some partitions will be larger than 100 blocks, some will be smaller
 - Use a hash function that hashes to 100*f different values
 - f is called fudge factor, typically around 1.2
 - So we may consider $h_1(a) = a \% 120$.
 - This is okay IF a is nearly uniformly distributed
- What if just set hash to output 200 values?
 - would need per-value output block in mem during build phase
 - oops

Hash Join: Issues

- Memory required ?
 - Say S = 10000 blocks, Memory = M = 100 blocks
 - So 120 different partitions
 - During phase 1:
 - Need 1 block for storing R
 - Need 120 blocks for storing each partition of R
 - So must have at least 121 blocks of memory
 - We only have 100 blocks
- Typically need *SQRT(*|*S*| * *f*) blocks of memory
 - So if S is 10000 blocks, and f = 1.2, need 110 blocks of memory
 - Need:
 - $M > n_h + 1$
 - each partition of S to fit in M-1 (why not R?)
 - space for hash build on h_2 (small, so usually ignored)
 - Example:
 - $h_n = 109$, average size = 10,000/109 = 91.7

Hash Join: If S_i Too Large

- Avoidance
 - Fudge factor
- Resolution
 - partition w/ a third hash: h₃
 - also partition R_i
 - go through each sub-partition
 - this approach could be used for every partition

Hash Join: Example

Estimate cost of single-step hash-join on *R* and *S*. Assume: $b_r = 2000, b_s = 1000, M = 202, fudge factor in this example = 1.0$

Partitions of R?

R partition sizes do not matter. Each partition of S needs to fit.

During the merge phase we need 1 block for R, 1 for output, and then have 200 for S: 5 partitions for S, so 5 partitions for R

Block transfers for the partitioning phase?

Each block of R and S must be read and written once, so: 2 * (2000+1000) = 6000

Block transfers during the second (join) phase?

2000 + 1000 = 3000 because we ignore the final writes (pipelining)

How many seeks in join phase?

We ignore the final writes, so for each set of partitions, we seek to beginning of S_i to read it into memory, then seek to beginning of R_i and go through block by block (it does not fit into memory). Total num seeks = 5(1+1) = 10.

Joins: Summary

- Block Nested-loops join
 - Can always be applied irrespective of the join condition
- Index Nested-loops join
 - Only applies if an appropriate index exists
- Hash joins only for equi-joins
 - Join algorithm of choice when the relations are large
- Sort-merge join
 - Very commonly used especially since relations are typically sorted
 - Sorted results commonly desired at the output
 - To answer group by queries, for duplicate elimination, because of ASC/DSC