
So far…
● Block Nested-loops join 

● Can always be applied irrespective of the join condition 
● If the smaller relation fits in memory, then cost: 

● br + bs 
● This is the best we can hope if we have to read the relations once each 

● CPU cost of the inner loop is high 
● Typically used when the smaller relation is really small (few tuples) and index 

nested-loops can’t be used 
● Index Nested-loops join 

● Only applies if an appropriate index exists 
● Very useful when we have selections that return small number of tuples 

● select balance from c, a where c.name = “j. s.” and c.SSN = a.SSN

Merge-Join (Sort-merge join)
● Cost: 

● If the relations sorted, then just 
● br + bs block transfers, some seeks depending on memory size 

● What if not sorted ? 
● Then sort the relations first 
● In many cases, still very good performance 
● Typically comparable to hash join 

● Observation: 
● The final join result will also be sorted on a1 
● Might make further operations easier 

● E.g. duplicate elimination



Merge-Join (Sort-merge join)
● Pre-condition: 

● equi-/natural joins 
● The relations must be sorted by the join attribute 
● If not sorted, can sort first, and then use this 

● Called “sort-merge join” sometimes

SELECT *  
FROM r, s 
WHERE r.a1 = s.a1

Step: 
    1. Compare the tuples at pr and ps 
    2. Move pointers down the list 
         - Depending on the join condition 
    3. Repeat 

Sorting short segue

● Commonly required for many operations 
● Duplicate elimination, group by’s, sort-merge join 
● Queries may have ASC or DSC in the query 

● One option: 
● Read the lowest level of B+-tree 

● May be enough in many cases 
● But if relation not sorted, too many random accesses 

● If relation small enough… 
● Read in memory, use quicksort (qsort() in C) 

● What if relation too large to fit in memory ? 
● External sort-merge



External Sort-Merge
● Divide and Conquer !! 

● Let M denote the memory size (in blocks) 

● Phase 1: 
● Read first M blocks of relation, sort, and write it to disk 
● Read the next M blocks, sort, and write to disk … 
● Say we have to do this “N” times 
● Result: N sorted runs of size M blocks each 

● Phase 2: 
● Merge the N runs (N-way merge) 
● Can do it in one shot if N < M 

● need one block per run, plus one block for output

● Phase 1: 
● Create sorted runs of size M each 
● Result: N sorted runs of size M blocks each 

● Phase 2: 
● Merge the N runs (N-way merge) 
● Can do it in one shot if N < M 

● What if N > M ? 
● Do it recursively  
● Not expected to happen 
● If M = 1000, can compare 1000 runs 

● (4KB blocks): can sort: 1000 runs, each of 1000 blocks, each of 4k bytes 
     = 4GB of data 

External sort-merge



Example: External Sorting Using Sort-Merge (N >= M)

M = 3 
N = 12

we assume each tuple is a block in size to simplify this example

External Merge Sort (Cont.)
Cost analysis: 

● Disk for each run needs to be read and written, so: 
● = 2br * (tT + tS) 

● Total number of merge passes required: ⎡logM–1(br / M)⎤,  

● Each pass also reads and writes entire R 
● Disk for initial run creation as well as in each pass is 2br 

● for final pass, we don’t count write cost  
▪ output may be pipelined (sent via memory to parent operation) 

Thus total number of disk transfers for external sorting: 
  br ( 2 ⎡logM–1(br / M)⎤ + 1) 

Seeks: 
   2 ⎡br / M⎤  +  ⎡br / bb⎤ (2 ⎡logM–1(br / M)⎤ - 1) 

bb is #blocks read at a time, and how many output blocks needed.  
Unless otherwise specified, we assume bb = 1.



M = 3 
N = 12

br ( 2 ⎡logM–1(br / M)⎤ + 1) blocks 

seeks: 

 2 ⎡br / M⎤  +  ⎡br / bb⎤ (2 ⎡logM–1(br / M)⎤ - 1)

● Example: 
● For br=12, M = 3 
● Disk transfers = 12(2⎡log2(12 / 3)⎤ + 1) = 60 
● Seeks = 2 ⎡12/3⎤ + 12 (⎡2 log2(12 / 3)⎤ - 1) = 8 + 36 = 44

Example: External Sorting Using Sort-Merge (N >= M)

pop the stack! segue over



Hash Join
       read S in memory and build a hash index on it 
   for each tuple r in R 
            use the hash index on S to find tuples such that S.a = r.a  

Case 1: Smaller relation (S) fits in memory 
● recall Nested-loops join: 
       for each tuple r in R 
             for each tuple s in S 
                 check if r.a = s.a 

● Cost: br + bs transfers, 2 seeks 
● The inner loop is not exactly cheap (high CPU cost)

Hash Join
Case 1: Smaller relation (S) fits in memory 
      for each tuple r in R 
             for each tuple s in S 
                 use the hash index on S to find tuples such that S.a = r.a 

● Cost: br + bs transfers, 2 seeks (unchanged) 
● Why good ? 

● CPU cost is much better 
● Much better than nested-loops join when S doesn’t fit in memory (next)



Hash Join
Case 2: Smaller relation (S) doesn’t fit in memory 
● Basic idea: 

● partition tuples of each relation into sets that have same value on join attributes 
● must be equi-/natural join 

● Phase 1: 
● Read R block by block and partition using a hash function:  

● h1(a)                       // assume has k distinct outputs 
● Create one partition for each possible value of h1(a)   (k partitions) 
● Write the partitions to disk: 

● R gets partitioned into R1, R2, …, Rk 

● Similarly, read and partition S, and write partitions S1, S2,  …, Sk to disk 
● Requirements: 

● Room for single R block, single output block for each hash value 
● Each S partition fits into remaining memory

Hash Join
● Case 2: Smaller relation (S) doesn’t fit in memory 

● Phase 1 
● Phase 2: 

● Read Si into memory, and build a hash index on it (Si fits in memory) 
● Use a different hash function from the partition hash: h2(a) 

● Read Ri block by block, and use the hash index to find matches. 
● Repeat for all i.



Hash Join k = 5 
num hash values

“probe” 
input

“build” 
input

Hash Join
● Case 2: Smaller relation (S) doesn’t fit in memory 
● Two “phases”: 
● Phase 1: 

● Partition the relations using one hash function, h1(a) 
● Phase 2: 

● Read Si into memory, and build a hash index on it (Si fits in memory) 
● Read Ri block by block, and use the hash index to find matches. 

● Cost ?                                         remember, we ignore last output 
● 3(br + bs ) block transfers 

● R or S might have partially full block to be read and written    (ignored) 
●  + 2( ⎡br / bb⎤ + ⎡bs / bb⎤)  seeks     (seek count unclear) 

● Where bb is the size of each input buffer (p 716) 
● Much better than Nested-loops join under the same conditions



Hash Join: Issues
● How to guarantee that each partition of S fits in memory ? 

● Say S = 10,000 blocks, Memory = M = 100 blocks 
● Use a hash function that hashes to 100 different values ? 

● Eg. h1(a) = a % 100 ? 
● Problem: Impossible to guarantee uniform split 

● Some partitions will be larger than 100 blocks, some will be smaller 
● Use a hash function that hashes to 100*f different values 

● f is called fudge factor, typically around 1.2 
● So we may consider h1(a) = a % 120. 
● This is okay IF a is nearly uniformly distributed 

● What if just set hash to output 200 values? 
● would need per-value output block in mem during build phase 
● oops

Hash Join: Issues
● Memory required ? 

● Say S = 10000 blocks, Memory = M = 100 blocks  
● So 120 different partitions 
● During phase 1: 

● Need 1 block for storing R 
● Need 120 blocks for storing each partition of R 

● So must have at least 121 blocks of memory 
● We only have 100 blocks 

● Typically need SQRT(|S| * f) blocks of memory 
● So if S is 10000 blocks, and f = 1.2, need 110 blocks of memory 
● Need: 

● M > nh + 1 
● each partition of S to fit in M-1      (why not R?) 
● space for hash build on h2            (small, so usually ignored) 

● Example: 
● hn = 109, average size = 10,000/109 = 91.7



Hash Join: If Si Too Large
● Avoidance 

● Fudge factor 

● Resolution  
● partition w/ a third hash: h3 
● also partition Ri 

● go through each sub-partition 

● this approach could be used for every partition

Estimate cost of single-step hash-join on R and S. Assume: 
br = 2000, bs = 1000, M = 202, fudge factor in this example = 1.0 

Partitions of R ? 
R partition sizes do not matter. Each partition of S needs to fit. 
During the merge phase we need 1 block for R, 1 for output, and then have 200 for S: 5 
partitions for S, so 5 partitions for R 

Block transfers for the partitioning phase? 
Each block of R and S must be read and written once, so: 2 * (2000+1000) = 6000 

Block transfers during the second (join) phase? 
2000 +1000 = 3000 because we ignore the final writes (pipelining) 

How many seeks in join phase? 
We ignore the final writes, so for each set of partitions, we seek to beginning of Si to read it 
into memory, then seek to beginning of Ri and go through block by block (it does not fit into 
memory). Total num seeks = 5(1+1) = 10.  

Hash Join: Example



Joins: Summary
● Block Nested-loops join 

● Can always be applied irrespective of the join condition 
● Index Nested-loops join 

● Only applies if an appropriate index exists 
● Hash joins – only for equi-joins 

● Join algorithm of choice when the relations are large 
● Sort-merge join 

● Very commonly used – especially since relations are typically sorted 
● Sorted results commonly desired at the output 

● To answer group by queries, for duplicate elimination, because of ASC/DSC 


