So far…

- **Block Nested-loops join**
	- Can always be applied irrespective of the join condition
	- If the smaller relation fits in memory, then cost:
		- $b_r + b_s$
		- This is the best we can hope if we have to read the relations once each
	- CPU cost of the inner loop is high
	- Typically used when the smaller relation is really small (few tuples) and index nested-loops can't be used
- Index Nested-loops join
	- Only applies if an appropriate index exists
	- Very useful when we have selections that return small number of tuples
		- \bullet select balance from c, a where c.name = "j. s." and c.SSN = a.SSN

Merge-Join (Sort-merge join)

- Cost:
	- If the relations sorted, then just
		- *b_r* + *b_s* block transfers, some seeks depending on memory size
	- What if not sorted ?
		- Then sort the relations first
		- In many cases, still very good performance
		- Typically comparable to hash join
- Observation:
	- The final join result will also be sorted on *a1*
	- Might make further operations easier
		- \bullet E.g. duplicate elimination

Merge-Join (Sort-merge join)

- Pre-condition:
	- equi-/natural joins
	- The relations must be sorted by the join attribute
	- If not sorted, can sort first, and then use this
- Called "sort-merge join" sometimes

*SELECT * FROM r, s WHERE r.a1 = s.a1*

Step:

- 1. Compare the tuples at p_r and p_s
- 2. Move pointers down the list
	- Depending on the join condition

Sorting *short segue*

- Commonly required for many operations
	- Duplicate elimination, group by's, sort-merge join
	- Queries may have ASC or DSC in the query
- One option:
	- Read the lowest level of B +-tree
		- May be enough in many cases
	- But if relation not sorted, too many random accesses
- If relation small enough...
	- Read in memory, use quicksort (qsort() in C)
- What if relation too large to fit in memory?
	- External sort-merge

External Sort-Merge

- Divide and Conquer !!
- Let *M* denote the memory size (in blocks)

• Phase 1:

- Read first M blocks of relation, sort, and write it to disk
- \bullet Read the next M blocks, sort, and write to disk ...
- Say we have to do this "N" times
- Result: *N* sorted runs of size *M* blocks each

• Phase 2:

- Merge the *N* runs (*N-way merge)*
- Can do it in one shot if $N < M$
	- *need one block per run, plus one block for output*

External sort-merge

- Phase 1:
	- Create *sorted runs of size M* each
	- Result: *N* sorted runs of size *M* blocks each
- Phase 2:
	- Merge the *N* runs (*N-way merge)*
	- \bullet Can do it in one shot if $N < M$

• What if $N > M$?

- Do it recursively
- Not expected to happen
- \bullet If $M = 1000$, can compare 1000 runs
	- (4KB blocks): can sort: 1000 runs, each of 1000 blocks, each of 4k bytes $= 4GB$ of data

-
- output may be *pipelined* (sent via memory to parent operation)

Thus total number of disk transfers for external sorting:

 b_r (2 $\lceil \log_{M-1}(b_r/M) \rceil + 1$)

Seeks:

$$
2\left\lceil b_r/M\right\rceil + \left\lceil b_r/b_b\right\rceil (2\left\lceil \log_{M-1}(b_r/M)\right\rceil - 1)
$$

 b_b is #blocks read at a time, and how many output blocks needed. Unless otherwise specified, we assume $b_b = 1$.

Hash Join

 read S in memory and build a hash index on it for each tuple r in R use the hash index on S to find tuples such that S.a = r.a

Case 1: Smaller relation (S) fits in memory

recall Nested-loops join:

for each tuple r in R

 for each tuple s in S

 check if r.a = s.a

- Cost: $b_r + b_s$ transfers, 2 seeks
- The inner loop is not exactly cheap (high CPU cost)

Hash Join

Case 1: Smaller relation (S) fits in memory *for each tuple r in R for each tuple s in S use the hash index on S to find tuples such that S.a = r.a*

- Cost: $b_r + b_s$ transfers, 2 seeks (unchanged)
- Why good?
	- CPU cost is much better
	- Much better than nested-loops join when *S* doesn't fit in memory (next)

Hash Join

Case 2: Smaller relation (S) doesn't fit in memory

- **Basic idea:**
	- partition tuples of each relation into sets that have same value on join attributes
	- *must be equi-/natural join*
- Phase 1:
	- Read *R* block by block and partition using a hash function:
		- \cdot *h₁(a)* // *assume has k distinct outputs*
	- Create one partition for each possible value of $h_1(a)$ (*k* partitions)
	- Write the partitions to disk:
		- *R* gets partitioned into $R_1, R_2, ..., R_k$
	- Similarly, read and partition *S*, and write partitions S_1 , S_2 , ..., S_k to disk
	- Requirements:
		- Room for single R block, single output block for each hash value
		- Each *S* partition fits into remaining memory

Hash Join

- Case 2: Smaller relation *(S)* doesn't fit in memory
	- Phase 1
	- Phase 2:
		- **•** Read S_i into memory, and build a hash index on it $(S_i$ fits in memory)
			- \bullet *Use a different hash function from the partition hash: h₂(a)*
		- \bullet Read R_i block by block, and use the hash index to find matches.
		- Repeat for all *i*.

Hash Join: Issues

- How to guarantee that each partition of *S* fits in memory ?
	- Say $S = 10,000$ blocks, Memory $= M = 100$ blocks
	- Use a hash function that hashes to 100 different values ?
		- Eg. $h1(a) = a \frac{9}{6} 100$?
	- Problem: Impossible to guarantee uniform split
		- Some partitions will be larger than 100 blocks, some will be smaller
	- Use a hash function that hashes to *100^{*f}* different values
		- *f* is called fudge factor, typically around 1.2
		- So we may consider $h_1(a) = a \frac{a}{b} 120$.
		- This is okay IF *a* is nearly uniformly distributed
- What if just set hash to output 200 values?
	- would need per-value output block in mem during build phase
	- oops

Hash Join: Issues

- Memory required?
	- Say $S = 10000$ blocks, Memory = $M = 100$ blocks
	- So 120 different partitions
	- During phase 1:
		- Need 1 block for storing *R*
		- Need 120 blocks for storing each partition of *R*
	- So must have at least 121 blocks of memory
	- We only have 100 blocks
- Typically need *SQRT(|S| * f)* blocks of memory
	- So if S is 10000 blocks, and $f = 1.2$, need 110 blocks of memory
	- Need:
		- $M > n_h + 1$
		- each partition of S to fit in M-1 (why not R?)
		- space for hash build on h_2 (small, so usually ignored)
	- Example:
		- $h_n = 109$, average size = 10,000/109 = 91.7

Hash Join: If *S_i* Too Large

- Avoidance
	- **Fudge factor**

Resolution

- partition w/ a third hash: h_3
- also partition R_i
- go through each sub-partition
- this approach could be used for *every* partition

Hash Join: Example

Estimate cost of single-step hash-join on *R* and *S. Assume:* b_r = 2000, b_s = 1000, M = 202, fudge factor in this example = 1.0

Partitions of *R* ?

R partition sizes do not matter. Each partition of *S* needs to fit.

During the merge phase we need 1 block for *R*, 1 for output, and then have 200 for *S*: 5 partitions for S, so 5 partitions for *R*

Block transfers for the partitioning phase?

Each block of R and S must be read and written once, so: $2 * (2000+1000) = 6000$

Block transfers during the second (join) phase?

 $2000 + 1000 = 3000$ because we ignore the final writes (pipelining)

How many seeks in join phase?

We ignore the final writes, so for each set of partitions, we seek to beginning of *Si* to read it into memory, then seek to beginning of *Ri* and go through block by block (it does not fit into memory). Total num seeks = $5(1+1)$ = 10.

Joins: Summary

- Block Nested-loops join
	- Can always be applied irrespective of the join condition
- Index Nested-loops join
	- Only applies if an appropriate index exists
- Hash joins only for equi-joins
	- Join algorithm of choice when the relations are large
- Sort-merge join
	- Very commonly used especially since relations are typically sorted
	- Sorted results commonly desired at the output
		- To answer group by queries, for duplicate elimination, because of ASC/DSC