So far...

e Block Nested-loops join
» Can always be applied irrespective of the join condition
« If the smaller relation fits in memory, then cost:
b, + by
This is the best we can hope if we have to read the relations once each
» CPU cost of the inner loop is high

« Typically used when the smaller relation is really small (few tuples) and index
nested-loops can’t be used

e Index Nested-loops join
« Only applies if an appropriate index exists

» \Very useful when we have selections that return small number of tuples

select balance from ¢, a where c.name = “j. s.” and ¢.SSN = a.SSN

Merge-Join (Sort-merge join)

e Cost:
« If the relations sorted, then just

b, + b, block transfers, some seeks depending on memory size

¢ What if not sorted ?
Then sort the relations first
In many cases, still very good performance
Typically comparable to hash join
e Observation:
» The final join result will also be sorted on at
» Might make further operations easier

E.g. duplicate elimination

Merge-Join (Sort-merge join)

e Pre-condition:
» equi-/natural joins
« The relations must be sorted by the join attribute
« If not sorted, can sort first, and then use this

e (Called “sort-merge join” sometimes

SELECT *
FROM, s al a2
WHERE r.at = s.a1 p}“ T3 Ps
b|1
Step: dl 8
1. Compare the tuples at pr and ps d 113
2. Move pointers down the list R
- Depending on the join condition s
3. Repeat s
ql|e6

BT ®

S|z T O >

Sorting short segue

e Commonly required for many operations
* Duplicate elimination, group by’s, sort-merge join
» Queries may have ASC or DSC in the query

e One option:

» Read the lowest level of B+-tree
May be enough in many cases

« But if relation not sorted, too many random accesses
» |[f relation small enough...
» Read in memory, use quicksort (gsort() in C)

o What if relation too large to fit in memory ?
» External sort-merge

External Sort-Merge
e Divide and Conquer !!
e Let M denote the memory size (in blocks)

e Phase 1:

Read first M blocks of relation, sort, and write it to disk
Read the next M blocks, sort, and write to disk ...

Say we have to do this “N” times

Result: N sorted runs of size M blocks each

e Phase 2:

* Merge the Nruns (N-way merge)
« Candoitinoneshotif N <M
« need one block per run, plus one block for output

External sort-merge

e Phase 1:
e (Create sorted runs of size M each
e Result: N sorted runs of size M blocks each

e Phase 2:

e Merge the Nruns (N-way merge)
e Candoitinoneshotif N<M

e Whatif N>M?

« Do it recursively

» Not expected to happen

« |f M =1000, can compare 1000 runs
(4KB blocks): can sort: 1000 runs, each of 1000 blocks, each of 4k bytes
= 4GB of data

Example: External Sorting Using Sort-Merge (N >= M)

19

a a|19
g (24 d 31 NEY a|l4 :
a |24 24 a|19 M=3
& c[33
d |31 b |14 N=12
88 bl ST 33
; 14 c | el 21 7
e [16 8|24
e |16 |d]21
r |16 d|31
d (21 NET
d |21 3 e |16
o al 7
m r 161 1B g |24
pl2 m| 3
d[7 a |14 f = p| 2
a |14 |7 P r |16
P2 r |16
initial sorted
relation runs runs output
create merge merge
runs pass—1 pass—2

we assume each tuple is a block in size to simplify this example

External Merge Sort (Cont.)

Cost analysis:
» Disk for each run needs to be read and written, so:
« = 2br*(fr+ ts)

- Total number of merge passes required: [log,, ,(b,/ M),

* Each pass also reads and writes entire R
« Disk for initial run creation as well as in each pass is 2b,

for final pass, we don’t count write cost
= output may be pipelined (sent via memory to parent operation)

Thus total number of disk transfers for external sorting:
b,(2[log,, (b,/M)] + 1)

Seeks:
2[b./M] + [b,/b,](2]log,, (b,/M)]-1)

b, is #blocks read at a time, and how many output blocks needed.
Unless otherwise specified, we assume by = 1.

External Sorting Using Sort-Merge (N >= M)

14

19

14

83

21

31

16

24

"o (B |e |||

16

Example:
a |19 al19
g (24 d |31 bl 12
:1 24 g |24 <133
b [14 d| 31
c |33
i ¢ 133 e|l6
24
T3 e (16 g
r (16
d |21 NET
d (21 ml 3
m d| 7
. r 161 dl21
d a 14f il ¢
a |14 d| 7 p
16
2 r
initial P
relation runs runs
create merge
runs pass—1
« Example:

e« Forb=12, M =3

« Disk transfers = 12(2[log72/3)] + 1) = 60

sorted
output

3

M
N=12

b, (2 [l0g,,_,(b,/ M)] + 1) blocks

seeks:
2[b./M] + [b,/by] (2 [logy_(b./ M)]-1)

o Seeks = 2[12/3] + 12 (]2 log(12/3)]- 1) = 8 + 36 = 44

POP the stack! segue over

Hash Join

read S in memory and build a hash index on it
for each tuple rin R
use the hash index on S to find tuples such that S.a = r.a

Case 1: Smaller relation (S) fits in memory
 recallNested-loops join:
for each tuple r in R

for each tuple s in S
checkifra=s.a
o Cost: b, + by transfers, 2 seeks

e The inner loop is not exactly cheap (high CPU cost)

Hash Join

Case 1: Smaller relation (S) fits in memory
for each tuple r in R

for each tuple s in S
use the hash index on S to find tuples such that S.a = r.a

o Cost: b, + by transfers, 2 seeks (unchanged)

 Why good ?
» CPU cost is much better
» Much better than nested-loops join when S doesn't fit in memory (next)

Hash Join

Case 2: Smaller relation (S) doesn’t fit in memory
e Basic idea:
* partition tuples of each relation into sets that have same value on join attributes
° must be equi-/natural join
e Phase 1:
« Read R block by block and partition using a hash function:
* hi(a) //assume has k distinct outputs
Create one partition for each possible value of hi(a) (k partitions)
» Write the partitions to disk:
R gets partitioned into A, A,, ..., A,
« Similarly, read and partition S, and write partitions S, S,, ..., S, to disk

» Requirements:
Room for single R block, single output block for each hash value
Each S partition fits into remaining memory

Hash Join

e Phase 2:

« Read S;into memory, and build a hash index on it (S; fits in memory)
Use a different hash function from the partition hash: h,(a)
« Read R, block by block, and use the hash index to find matches.

» Repeat for all i.

“probe”

Hash Join ke

“build”
input

A

Y

A

Y

A

A

Y

Y

- 4

parﬁons
of r

partitions
of s

k=5

num hash values

Hash Join

Cost ?

3(b, + b,) block transfers

remember, we ignore last output

R or S might have partially full block to be read and written (ignored)

+2([b,/b,]+[bs/b,]) seeks

(seek count unclear)

Where b, is the size of each input buffer (p 716)

Much better than Nested-loops join under the same conditions

Hash Join: Issues

» How to guarantee that each partition of S fits in memory ?
« Say S = 10,000 blocks, Memory = M = 100 blocks
» Use a hash function that hashes to 100 different values ?
Eg. h1(a)=a % 100 ?
» Problem: Impossible to guarantee uniform split
Some partitions will be larger than 100 blocks, some will be smaller
» Use a hash function that hashes to 700*f different values
fis called fudge factor, typically around 1.2
So we may consider hi(a) =a % 120.
This is okay IF a is nearly uniformly distributed

o What if just set hash to output 200 values?

» would need per-value output block in mem during build phase
* 00pS

Hash Join: Issues

e Memory required ?
e Say S = 10000 blocks, Memory = M = 100 blocks
e So 120 different partitions
¢ During phase 1:
Need 1 block for storing R
Need 120 blocks for storing each partition of R
e Somust have at least 121 blocks of memory
« We only have 100 blocks
« Typically need SQRT(|S| * f) blocks of memory
So if S is 10000 blocks, and f = 1.2, need 110 blocks of memory
Need:
M>n,+1
each partition of S to fit in M-1 (why not R?)
space for hash build on h2 (small, so usually ignored)
* Example:
h, =109, average size = 10,000/109 = 91.7

Hash Join: If S; Too Large

* Avoidance
« Fudge factor

e Resolution
» partition w/ a third hash: hs
» also partition R,

» go through each sub-partition

» this approach could be used for every partition

Hash Join: Example

Estimate cost of single-step hash-join on R and S. Assume:
= 2000, bs = 1000, M = 202, fudge factor in this example = 1.0

Partitions of R ?
R partition sizes do not matter. Each partition of S needs to fit.

During the merge phase we need 1 block for R, 1 for output, and then have 200 for S: 5
partitions for S, so 5 partitions for R

Block transfers for the partitioning phase?
Each block of R and S must be read and written once, so: 2 * (2000+1000) = 6000

Block transfers during the second (join) phase?
2000 +1000 = 3000 because we ignore the final writes (pipelining)

How many seeks in join phase?

We ignore the final writes, so for each set of partitions, we seek to beginning of S;ito read it
into memory, then seek to beginning of R;and go through block by block (it does not fit into
memory). Total num seeks = 5(1+1) = 10.

Joins: Summary

e Block Nested-loops join
« Can always be applied irrespective of the join condition
¢ |Index Nested-loops join
« Only applies if an appropriate index exists
* Hash joins — only for equi-joins
» Join algorithm of choice when the relations are large
e Sort-merge join
« Very commonly used — especially since relations are typically sorted

« Sorted results commonly desired at the output

To answer group by queries, for duplicate elimination, because of ASC/DSC

