
Query Processing
● Overview
● Sorting
● Join operators
● Other operators
● Selection operation
● Putting it all together…

Group By and Aggregation

select a, count(a)
from R
group by a;

● Hash-based algorithm:
● Create a hash table on a, and keep the count(a) so far
● Read R tuples one by one
● For a new R tuple, “r”

● Check if r.a exists in the hash table
● If yes, increment the count
● If not, insert a new value

Group By and Aggregation

select a, count(b)
from R
group by a;

● Sort-based algorithm:
● Sort R on a
● Now all tuples in a single group are contiguous
● Read tuples of R (sorted) one by one and compute the

aggregates

Group By and Aggregation

Summary:
● sum(), count(), min(), max(): only need to maintain one value per group

● Called “distributive”
● average() : need to maintain the “sum” and “count” per group

● Called “algebraic”
● stddev(): algebraic, but need to maintain some more state
● median(): efficiently via sort, but need two passes (called “holistic”)

● First to find the number of tuples in each group, and then to find the median
tuple in each group

● count(distinct b): must do duplicate elimination before the count

Duplicate Elimination

select distinct a
from R ;

● Best done using sorting – Can also be done using hashing
● Steps:

● Sort the relation R
● Read tuples of R in sorted order
● prev = null;
● for each tuple r in R (sorted)

● if r != prev then
▪ Output r
▪ prev = r

● else
▪ Skip r

Set operations

(select * from R) union (select * from S) ;
(select * from R) intersect (select * from S) ;
(select * from R) union all (select * from S) ;
(select * from R) intersect all (select * from S) ;

● Remember the rules about duplicates
● “union all”: just append the tuples of R and S
● “union”: append the tuples of R and S, and do duplicate

elimination
● “intersection”: similar to joins

● Find tuples of R and S that are identical on all attributes
● Can use hash-based or sort-based algorithm

Query Processing
● Overview
● Join execution

● Selection operation
● More join execution
● Sorting
● Other operators
● Putting it all together…

“Cost”
● Complicated to compute
● We will focus on disk:

● Number of I/Os ?
● Not sufficient
● Number of seeks matters a lot… why ?

● tT – time to transfer one block
● tS – time for one seek
● Cost for b block transfers plus S seeks

 b * tT + S * tS
● Measured in seconds

Selection Operation

● SELECT * FROM person WHERE SSN = “123”
● Option 1: Sequential Scan

● Read the relation start to end and look for “123”
● Can always be used (not true for the other options)

● Cost ?
● Let br = Number of relation blocks
● Then:

▪ 1 seek and br block transfers
● So:

▪ tS + br * tT sec
● Improvements:

▪ If SSN is a key, then can stop when found
▪ So on average, br/2 blocks accessed

Selection Operation

● SELECT * FROM person WHERE SSN = “123”
● Option 2 : Binary Search:

● Pre-condition:
● The relation is sorted on SSN
● Selection condition is an equality

▪ E.g. can’t apply to “Name like ‘%424%’”
● Do binary search

● Cost of finding the first tuple that matches
▪ ⎡log2(br)⎤ * (tT + tS)
▪ All I/Os are random, so need a seek for all

▪ The last few are short hops, but we ignore such small effects
● Not quite: What if 10000 tuples match the condition ?

● Incurs additional cost

Selection Operation

● SELECT * FROM person WHERE SSN = “123”
● Option 3 : Use Index

● Pre-condition:
● An appropriate index must exist

● Use the index
● Find the first leaf page that contains the search key
● Retrieve all the tuples that match by following the pointers

▪ If primary index, the relation is sorted by the search key
▪ Go to the relation and read blocks sequentially

▪ If secondary index, must follow all pointers using the index

Selection w/ B+-Tree Indexes

n * (tT + tS)
n = number of records that
match
This can be bad

hi * (tT + tS)secondary index, not a
key, equality

1 * (tT + tS)hi * (tT + tS)secondary index,
candidate key, equality

1 * (tT + tS) + (b – 1) * tT

Note: primary == sorted
b = number of pages that
contain the matches

hi * (tT + tS)primary index, not a key,
equality

1 * (tT + tS)hi * (tT + tS)primary index, candidate
key, equality

cost of retrieving
the tuples

cost of reading the
first leaf

hi = height of the index

why?

Selection Operation

● Selections involving ranges
● select * from accounts where balance > 100000
● select * from matches where matchdate between ’10/20/06’ and

’10/30/06’
● Option 1: Sequential scan
● Option 2: Using an appropriate index

● Can’t use hash indexes for this purpose

Selection Operation
● Complex selections

● Conjunctive: select * from accounts where balance > 100000 and SSN = “123”
● Disjunctive: select * from accounts where balance > 100000 or SSN = “123”

● Option 1: Sequential scan
● Option 2 (Conjunctive only): Using an appropriate index on one of the conditions

● E.g. Use SSN index to evaluate SSN = “123”. Apply the second condition to the tuples
that match

● Or do the other way around (if index on balance exists)
● Which is better ?

● Option 3 (Conjunctive only) : Choose a multi-key index
● Not commonly available

Selection Operation
● Complex selections

● Conjunctive: select * from accounts where balance > 100000 and SSN = “123”
● Disjunctive: select * from accounts where balance > 100000 or SSN = “123”

● Option 4: Conjunction or disjunction of record identifiers
● Use indexes to find all RIDs that match each of the conditions
● Do an intersection (for conjunction) or a union (for disjunction)
● Sort the records and fetch them in one shot
● Called “Index-ANDing” or “Index-ORing”

● Heavily used in commercial systems

Secondary B+-Tree Indexes and many tuples
● Assume secondary index R for non-candidate attribute ‘name’.
● How to hold all ptrs to matching tuples?

● easiest way is to keep existing structure and duplicate the keys

select * from R where name=“a”

● Assume tree w/ 3 matching tuples, so:

c = hR + extra_leaves + tuple_blocks = 1 + 1 + 3

● We assume number of extra leaves = .

● Each is random read, so here: c = (1 + 1 + 3) * (tT + tS)

⌈ #ptrs
ptrs /node ⌉ − 1

a b a a a

b

tree access read tuples

Query Processing
● Overview
● Selection operation
● Sorting
● Join operators
● Other operators
● Putting it all together…

● Two options:
● Materialization
● Pipelining

select customer-name
from account a, customer c
where a.SSN = c.SSN and
 a.balance < 2500

Evaluation of Expressions

Evaluation of Expressions

● Materialization
● Evaluate each expression separately

● Store its result on disk in temporary relations
● Read it for next operation

● Pipelining
● Evaluate multiple operators simultaneously

● Do not go to disk
● Usually faster, but requires more memory
● Also not always possible..

● E.g. Sort-Merge Join
● Harder to reason about

Materialization

● Materialized evaluation always works
● Can be expensive to write and read back from disk

● Cost formulas ignore cost of writing final results to disk, so
● Overall cost = Sum of costs of individual operations +

 cost of writing intermediate results to disk
● Double buffering: use two output buffers for each

operation, when one is full write it to disk, while the other
is getting filled
● Allows overlap of disk writes with computation and reduces

execution time

Pipelining
● Evaluate several operations at same time
● passing results from one to the next.
● E.g., in previous expression tree, don’t store result of

● Instead, pass tuples directly to the join.
● Similarly, don’t store result of join, pass tuples directly to projection.

● Much cheaper: no need to store a temporary relation to disk.
● Requires more memory

● All operations are executing at the same time (say as processes)
● Somewhat limited applicability
● Beware blocking operations:

● must consume entire input before it starts producing output tuples

)(2500 accountbalance<σ

Pipelining
● Need operators that generate output tuples while

receiving tuples from their inputs
● Selection: Usually yes.
● Sort: NO. The sort operation is blocking
● Sort-merge join: The final (merge) phase can be pipelined
● Hash join: The partitioning phase is blocking; the second phase

can be pipelined
● Aggregates: Typically no.
● Duplicate elimination: Since it requires sort, the final merge phase

could be pipelined
● Set operations: see duplicate elimination

Pipelining: Demand-driven
● Iterator Interface

● Each operator implements:
● init(): Initialize the state (sometimes called open())
● get_next(): get the next tuple from the operator
● close(): Finish and clean up

● Example: sequential scan:
● init(): open the file
● get_next(): get the next tuple from file
● close(): close the file

● Execute by repeatedly calling get_next() at the root
● root calls get_next() on its children, the children call get_next() on

their children etc…
● The operators need to maintain internal state so they know what to do

when the parent calls get_next()

Example: Hash-Join Iterator Interface
● open():

● Call open() on the left and the right children
● Decide if partitioning needed (if size of smaller relation > memory)
● Create a hash table

● get_next(): (no partitioning)
● First call:

● Get all tuples from the right child one by one (using get_next()), and insert
them into the hash table

● Read the first tuple from the left child (using get_next())
● All calls:

● Probe into the hash table using the “current” tuple from the left child
▪ Read a new tuple from left child if needed

● Return exactly “one result”
▪ Must keep track if more results need to be returned for that tuple

Hash-Join Iterator Interface
● close():

● Call close() on the left and the right children
● Delete the hash table, other intermediate state etc…

● get_next(): (partitioning)
● First call:

● Get all tuples from both children and create the partitions on disk
● Read the first partition for the right child and populate the hash table
● Read the first tuple from the left child from appropriate partition

● All calls:
● Once a partition is finished, clear the hash table, read in a new partition from

the right child, and re-populate the hash table
● Not that much more complicated

● Take a look at the postgreSQL codebase (or assignment 7)

Pipelining (Cont.)
● In producer-driven or eager pipelining:

● Operators produce tuples eagerly and pass them
up to their parents
● Buffer maintained between operators, child puts

tuples in buffer, parent removes tuples from buffer
● if buffer is full, child waits till there is space in the

buffer, and then generates more tuples
● System runs operations that have space in output

buffer and can process more input tuples

Query Processing
● Overview
● Selection operation
● Sorting
● Join operators
● Other operators
● Quiz 7
● Query optimization….

not Homework 7

I deleted this question this year,
maybe I’ll put it on the final.

