Query Processing

o Overview

Sorting

Join operators

Other operators
Selection operation
Putting it all together...

Group By and Aggregation

select a, count(a)
from R
group by a;

e Hash-based algorithm:
» Create a hash table on a, and keep the count(a) so far

* Read Rtuples one by one

* Foranew R tuple, “r”
Check if r.a exists in the hash table
If yes, increment the count
If not, insert a new value

Group By and Aggregation

select a, count(b)
from R
group by a;

e Sort-based algorithm:
« Sort Rona

* Now all tuples in a single group are contiguous

» Read tuples of R (sorted) one by one and compute the
aggregates

Group By and Aggregation

Summary:

sum(), count(), min(), max(): only need to maintain one value per group
« Called “distributive”

average() : need to maintain the “sum” and “count” per group

« Called “algebraic”

stddev(): algebraic, but need to maintain some more state

median(): efficiently via sort, but need two passes (called “holistic”)

« First to find the number of tuples in each group, and then to find the median
tuple in each group

count(distinct b): must do duplicate elimination before the count

Duplicate Elimination

select distinct a
fromR ;

* Best done using sorting — Can also be done using hashing
e Steps:

» Sort the relation R

» Read tuples of Rin sorted order

e prev = null;

» foreachtuple rin R (sorted)

if r /= prev then
= Qutput r

= prev =r

else

= Skipr

Set operations

(select * from R) union (select * from S) ;
(select * from R) intersect (select * from S) ;
(select * from R) union all (select * from S) ;
(select * from R) intersect all (select * from S) ;

e Remember the rules about duplicates
e “union all”: just append the tuples of R and S

e ‘“Union”: append the tuples of R and S, and do duplicate
elimination

* ‘intersection”. similar to joins
» Find tuples of R and S that are identical on all attributes
» (Can use hash-based or sort-based algorithm

Query Processing

Selection operation
More join execution
Sorting

Other operators
Putting it all together...

“Cost”

e Complicated to compute
 We will focus on disk:
 Number of 1/Os ?

Not sufficient
Number of seeks matters a lot... why ?

» t;—time to transfer one block
o tg—time for one seek

» Cost for b block transfers plus S seeks
b*tr+8S*tg

« Measured in seconds

Selection Operation

e SELECT * FROM person WHERE SSN = “123”

e Option 1: Sequential Scan
» Read the relation start to end and look for “123”
Can always be used (not true for the other options)
« Cost?
Let b, = Number of relation blocks
Then:
1 seek and b, block transfers
So:
ts+ b, "ty sec
Improvements:

If SSN is a key, then can stop when found
So on average, b,/2 blocks accessed

Selection Operation

e SELECT * FROM person WHERE SSN = “123”
e Option 2 : Binary Search:

» Pre-condition:
The relation is sorted on SSN
Selection condition is an equality
E.g. can't apply to “Name like ‘%424%""
» Do binary search
Cost of finding the first tuple that matches
[logx(b)1 ™ (tr + tg)
All'l/Os are random, so need a seek for all

The last few are short hops, but we ignore such small effects
« Not quite: What if 10000 tuples match the condition ?

Incurs additional cost

Selection Operation

e SELECT * FROM person WHERE SSN = “123”
e Option 3 : Use Index

« Pre-condition:

An appropriate index must exist

* Use the index

Find the first leaf page that contains the search key

Retrieve all the tuples that match by following the pointers

If primary index, the relation is sorted by the search key

Go to the relation and read blocks sequentially

If secondary index, must follow all pointers using the index

Selection w/ B+-Tree Indexes

cost of reading the

cost of retrieving

thy?' first leaf the tuples
primary index, candidate | h;,* (t; + tg) 1% (t + tg)
key, equality
primary index, not a key, |h;* (t; +t5) 1*(tr+tg)+(b—1) " t;
equality Note: primary == sorted
b = number of pages that
contain the matches
secondary index, h, * (t; + tg) 1% (t; + tg)
candidate key, equality
secondary index, not a h, * (t; + t5) n*(t; +tg)

key, equality

n = number of records that
match

This can be bad

h; = height of the index

Selection Operation

e Selections involving ranges
« select * from accounts where balance > 100000

« select * from matches where matchdate between '10/20/06° and
'10/30/06°

« Option 1: Sequential scan
» Option 2: Using an appropriate index

Can’t use hash indexes for this purpose

Selection Operation

e Complex selections
» Conjunctive: select * from accounts where balance > 100000 and SSN = “123”
» Disjunctive: select * from accounts where balance > 100000 or SSN = “123”
» Option 1: Sequential scan

« Option 2 (Conjunctive only). Using an appropriate index on one of the conditions

E.g. Use SSN index to evaluate SSN = “123”. Apply the second condition to the tuples

that match
Or do the other way around (if index on balance exists)
Which is better ?

» Option 3 (Conjunctive only) : Choose a multi-key index

Not commonly available

Selection Operation

e Complex selections
e (Conjunctive: select * from accounts where balance > 100000 and SSN = “123”
e Disjunctive. select * from accounts where balance > 100000 or SSN = “123”

« Option 4: Conjunction or disjunction of record identifiers
Use indexes to find all RIDs that match each of the conditions
Do an intersection (for conjunction) or a union (for disjunction)
Sort the records and fetch them in one shot
Called “Index-ANDing” or “Index-ORing”

* Heavily used in commercial systems

Secondary B+-Tree Indexes and many tuples

e Assume secondary index R for non-candidate attribute ‘name’.
e How to hold all ptrs to matching tuples?
e easiest way is to keep existing structure and duplicate the keys

select * from R where name=“a” b
e Assume tree w/ 3 matching tuples, so: \
alla|l|a al|lb
NN\ NN\

c = hg + extra leaves + tuple blocks =1 + 1 + 3
tree access read tuples

#pt
« We assume number of extra leaves = [il]—1.

ptrs/node

e FEachisrandomread, sohere: ¢ = (1+1+3)*({tr+ts)

Query Processing

e QOverview

Selection operation
Sorting

Join operators

Other operators
Putting it all together...

Evaluation of Expressions

I1

customer-name

select customer-name [>|4

from account a, customer ¢
where a.SSN = ¢.SSN and
a.balance < 2500

O balance < 2500 customer

account

e [wo options:
» Materialization
» Pipelining

Evaluation of Expressions

e Materialization
« Evaluate each expression separately
Store its result on disk in temporary relations
Read it for next operation

e Pipelining
« Evaluate multiple operators simultaneously
Do not go to disk
« Usually faster, but requires more memory
« Also not always possible..
E.g. Sort-Merge Join
» Harder to reason about

Materialization

* Materialized evaluation always works

e (Can be expensive to write and read back from disk

« Cost formulas ignore cost of writing final results to disk, so

Overall cost = Sum of costs of individual operations +
cost of writing intermediate results to disk

e Double buffering: use two output buffers for each
operation, when one is full write it to disk, while the other
Is getting filled
» Allows overlap of disk writes with computation and reduces
execution time

Pipelining

Evaluate several operations at same time |
passing results from one to the next.

]“_‘[customer-name

O palance < 2500 customer

account

 E.g., in previous expression tree, don'’t store result of

O palance <2500 (@ccount)

e Instead, pass tuples directly to the join.

» Similarly, don'’t store result of join, pass tuples directly to projection.

e Much cheaper: no need to store a temporary relation to disk.

e Requires more memory

» All operations are executing at the same time (say as processes)

e Somewhat limited applicability
e Beware blocking operations:

e must consume entire input before it starts producing output tuples

Pipelining

 Need operators that generate output tuples while
receiving tuples from their inputs

Selection: Usually yes.
Sort: NO. The sort operation is blocking
Sort-merge join: The final (merge) phase can be pipelined

Hash join: The partitioning phase is blocking; the second phase
can be pipelined

Aggregates: Typically no.

Duplicate elimination: Since it requires sort, the final merge phase
could be pipelined

Set operations: see duplicate elimination

Pipelining: Demand-driven

e |terator Interface

» Each operator implements:
init(): Initialize the state (sometimes called open())
get_next(): get the next tuple from the operator
close(): Finish and clean up

« Example: sequential scan:
init(): open the file
get_next(): get the next tuple from file
close(): close the file

* Execute by repeatedly calling get_next() at the root
« root calls get_next() on its children, the children call get_next() on
their children etc...

e The operators need to maintain internal state so they know what to do
when the parent calls get_next()

Example: Hash-Join lterator Interface

e open():
» Call open() on the left and the right children
» Decide if partitioning needed (if size of smaller relation > memory)
» (Create a hash table

o get_next(): (no partitioning)

o First call:

Get all tuples from the right child one by one (using get_next()), and insert
them into the hash table

Read the first tuple from the left child (using get_next())

o All calls:
Probe into the hash table using the “current” tuple from the left child
Read a new tuple from left child if needed
Return exactly “one result”
Must keep track if more results need to be returned for that tuple

Hash-Join lterator Interface

e close():
» Call close() on the left and the right children
» Delete the hash table, other intermediate state etc...
o get_next(): (partitioning)
« First call:
Get all tuples from both children and create the partitions on disk

Read the first partition for the right child and populate the hash table
Read the first tuple from the left child from appropriate partition

o All calls:

Once a partition is finished, clear the hash table, read in a new partition from
the right child, and re-populate the hash table

» Not that much more complicated

» Take alook at the postgreSQL codebase (or assignment 7)

Pipelining (Cont.)

e |n producer-driven or eager pipelining:
» Operators produce tuples eagerly and pass them
up to their parents

Buffer maintained between operators, child puts
tuples in buffer, parent removes tuples from buffer

if buffer is full, child waits till there is space in the
buffer, and then generates more tuples
» System runs operations that have space in output
buffer and can process more input tuples

Query Processing

e QOverview

Selection operation

e Sorting

e Join operators
e Other operators
e Quiz7

Query optimization....

not HOmMework 7

Q7

10 Points

Consider a relation R(A, B, C, D, E), and
the following FDs on it:

B — DE

D — AC

AE — C

The decomposition of R into R1(A, B, C)
and R2(C, D, E) is not lossless. Provide an
instance of R (i.e., an example set of
tuples) that demonstrates it. You don't
need more than 2 tuples. Note that the
instance must satisfy all the functional
dependencies.

Explanation
r(a,b,c,d,e)
b->de
d->ac
ae->c

r1(a,b,c)
no FDs carry

r2(c,d,e)
no FDs carry

R=
U122
2225151

R1:
1,11
2,21

R2:
1,22
Up151

Join back and get:
1,1,1,2,2
IRIRINIR
221,22
22111

Q8

2 Points

For the above schema, which of the following is NOT
a lossless decomposition?

O R1(A, B,), R2(B, C, D, E)
O R1(A, C, D), R2(B, D, E)
@® R1(A, C, D), R2(A, C, B, E)
O RI1(A, B, D, E), R2(B, C)

| deleted this question this year,
maybe I'll put it on the final.

