
Recap: Query Processing
● Many, many ways to implement the relational operations

● Numerous more used in practice
● Especially in data warehouses which handles TBs (even PBs) of data

● However, SQL is complex, and you can do much with it
● Compared to that, this isn’t much

● Most of it is very nicely modular
● Especially through use of the iterator() interface
● Can plug in new operators quite easily
● PostgreSQL query processing codebase very easy to read and modify

● Having many operators does complicate the query optimizer
● But needed for performance

Query Optimization
● Overview
● Statistics Estimation
● Transformation of Relational Expressions
● Optimization Algorithms

Query Optimization
● Why ?

● Many different ways of executing a given query
● Huge differences in cost

● Example:
● select * from person where ssn = “123”
● Size of person = 1GB
● Sequential Scan:

● Takes 1GB / (20MB/s) = 50s
● Use an index on SSN (assuming one exists):

● Approx 4 Random I/Os = 16ms

Query Optimization
● Many choices

● Using indexes or not, which join method (NL, hash, merge…)
● What join order ?

● Given a join query on R, S, T, should I join R with S first, or S
with T first ?

● This is an optimization problem
● Similar to say traveling salesman problem
● Number of different choices is very very large
● Step 1: Figuring out the solution space
● Step 2: Finding algorithms/heuristics to search through the

solution space

Query Optimization
● Equivalent relational expressions

● Drawn as a tree
● List the operations and the order

● note that the select operator has moved

Query Optimization
● Query evaluator internally annotates expressions annotated with the

methods to be used

Query Optimization
● Steps:

● Generate all possible execution plans for the query
● Figure out the cost for each of them
● Choose the best

● Not done exactly as listed above
● Too many different execution plans for that
● Typically interleave all of these into a efficient search algorithm

Query Optimization
● Steps (detail):

● Generate all possible execution plans for the query
● First generate all equivalent expressions
● Then consider all annotations for the operations

● Figure out the cost for each of them
● Compute cost for each operation

▪ Using the formulas discussed before
▪ One problem: How do we know the number of result tuples?

● Count them ! Better yet, estimate…
● Choose the lowest estimate…

Query Optimization
● Introduction
● Transformation of Relational Expressions
● Statistics Estimation
● Optimization Algorithms

Equivalence of Expressions

● Two relational expressions equivalent iff:
● Their result is identical on all legal databases

● Equivalence rules (Section 16.2):
● Allow replacing one expression with another

● Examples:
 1.
 2. Selections are commutative

))(()(
2121
EE θθθθ σσσ =∧

))(())((
1221
EE θθθθ σσσσ =

Equivalence Rules

● Examples:
 3. if L1 is subset of L2 etc.
 5. E1 θ E2 = E2 θ E1

 7(a). If θ0 only involves attributes from E1 :

 σθ0(E1 θ E2) = (σθ0(E1)) θ E2

● And so on…
● Many rules of this type

Pictorial Depiction

several more

Natural, inner
joins associative

Natural, inner
joins commutative

● Find the names of all customers with an account at a Brooklyn branch
whose account balance is over $1000.
 Πcustomer_name(σbranch_city = “Brooklyn” ∧ balance > 1000

 (branch (account depositor)))
● Apply the rules one by one

 Πcustomer_name((σbranch_city = “Brooklyn” ∧ balance > 1000

 (branch account)) depositor)

 Πcustomer_name(((σbranch_city = “Brooklyn” (branch)) (σ balance > 1000

 (account))) depositor)

Example

first predicate on branch
second predicate on account

Equivalence of Expressions

● The rules give us a way to enumerate all equivalent expressions
● Note that the expressions don’t yet contain physical access

methods, join methods etc…
● Simple Algorithm:

● Start with the original expression
● Apply all possible applicable rules to get a new set of expressions
● Repeat with this new set of expressions
● Till no new expressions are generated

Evaluation Plans

● We still need to choose the join methods etc..
● Option 1: Choose for each operation separately

● Usually okay, but sometimes the operators interact
● Consider joining three relations on the same attribute:

▪ R1 a (R2 a R3)
● Best option for R2 join R3 might be hash-join

▪ But if R1 is sorted on a, then sort-merge join preferable because it
produces the result in sorted order by a

● Also, pipelining or materialization
● Such issues typically arise when doing the optimization

Query Optimization
● Introduction
● Example of a Simple Type of Query
● Transformation of Relational Expressions
● Optimization Algorithms
● Statistics Estimation

Optimization Algorithms

● Two types:
● Exhaustive: attempt to find the best plan
● Heuristic: simpler, but not guaranteed to find the optimal plan

● Consider a simple case
● Join of the relations R1, …, Rn
● No selections, no projections

● Still very large plan space

Option 1:
● Works! …but is not feasible
● Consider a simple case:

● R1 (R2 (R3 (… Rn)))….)

● Just join commutativity and associativity will give us:
● At least:

●

● At worst:
● (factorial results from linear join order)

● Enumeration usually combined into a directed search

𝑛2 ∗ 2𝑛

𝑛! ∗ 2𝑛

Searching for the best plan

Searching for the best plan
Option 2:

● Dynamic programming
● There is much commonality between the plans
● Costs are additive

▪ Caveat: Sort orders (also called “interesting orders”)
● Reduces costs to O() or O() in most cases

● Interesting orders increase this a little bit
● Considered acceptable

● Typically .
● Switch to heuristic if not acceptable

n3n n2n

n < 10

R1 ⨝ R2
cost: 100
plan: HJ

R1 ⨝ R3
cost: 300
plan: SMJ

R1 ⨝ R4
cost: 400
plan: SMJ

R4 ⨝ R5
cost: 300
plan: HJ

R1 ⨝ R2 ⨝ R3
cost: 400

plan: SMJ(R1R2, R3)

….

….

R1 ⨝ R2 ⨝ R3 ⨝ R4 ⨝ R5
cost: 1100

plan: HJ(R1R2R3, R4R5)

R1 ⨝ R2 ⨝ R3 ⨝ R4
cost: 800

plan: HJ(R1R2R3, R4)
….

R1 R2 R3 R4 R5

⨝

⨝

⨝

⨝

R5R4R3

R2R1

HJ

HJ

HJ

SMJ

Left Deep Join Trees

● In left-deep join trees, the right-hand-side input for each join
is a relation, not the result of an intermediate join

● Early systems only considered these types of plans
● Easier to pipeline

Heuristic Optimization

● Dynamic programming is expensive
● Use heuristics to reduce the number of choices
● Typically rule-based:

● Perform selection early (reduces num tuples for later ops)
● Perform projection early (reduces num `attributes)
● Perform most restrictive selection and join operations before other

similar operations.
● Some systems use only heuristics, others combine heuristics

with partial cost-based optimization.

Steps in Typical Heuristic Optimization

1. Deconstruct conjunctive selections into a sequence of single selection
operations (Equiv. rule 1.).

2. Move selection operations down the query tree for the earliest possible
execution (Equiv. rules 2, 7a, 7b, 11).

3. Execute first those selection and join operations that will produce the smallest
relations (Equiv. rule 6).

4. Replace Cartesian product operations that are followed by a selection
condition by join operations (Equiv. rule 4a).

5. Deconstruct and move as far down the tree as possible lists of projection
attributes, creating new projections where needed (Equiv. rules 3, 8a, 8b, 12).

6. Identify those subtrees whose operations can be pipelined, and execute them
using pipelining).

Equiv rules in 16.2.1

Query Optimization
● Introduction
● Example of a Simple Type of Query
● Transformation of Relational Expressions
● Optimization Algorithms
● Statistics Estimation

Cost estimation
● Computing operator costs requires information like:

● Primary key ?
● Sorted or not, which attribute

● So we can decide whether need to sort again
● How many tuples in the relation, how many blocks ?
● RAID ?? Which one ?

● Read/write costs are quite different
● How many tuples match a predicate like “age > 40” ?

● E.g. Need to know how many index pages need to be read
● Intermediate result sizes

● E.g. (R JOIN S) is input to another join operation – need to know if it fits
in memory

● And so on…

Cost estimation
● Some info is static and maintained in the metadata

● Primary key ?
● Sorted or not, which attribute

● So we can decide whether need to sort again
● How many tuples in the relation, how many blocks ?
● RAID ?? Which one ?

● Read/write costs are quite different

● Typically kept in some tables in the database
● “all_tab_columns” in Oracle
● Postgresql: analyze cmd updates pg_statistic and pg_stats

● Most systems have commands for updating them

Cost estimation
● Others need to be estimated:

● How many tuples match a predicate like “age > 40” ?
● E.g. Need to know how many index pages need to be read

● Intermediate result sizes
● The problem variously called:

● “intermediate result size estimation”
● “selectivity estimation”

● Very important to estimate reasonably well
● e.g. consider “SELECT * FROM R WHERE zipcode = 20742”
● We estimate that there are 10 matches, and choose to use a secondary index

(remember: random I/Os)
● If turns out there are 10000 matches

● using a secondary index very bad idea…
● Optimizer often choose block-nested-loop joins if one relation very small
… underestimation can be very bad

Selectivity Estimation
● Basic idea:

● Maintain some information about the tables
● More information  more accurate estimation
● More information  higher storage cost, higher update cost

● Make uniformity and randomness assumptions to fill in the gaps

● Example:
● For a relation “people”, we keep:

● Total number of tuples = 100,000
● Distinct “zipcode” values that appear in it = 100

● Given a query: “zipcode = 20742”
● We estimated the number of matching tuples as: 100,000/100 = 1000

● What if I wanted more accurate information ?
● Keep histograms…

Histograms
● A condensed, approximate version of the “frequency distribution”

● Divide the range of the attribute value in “buckets”
● For each bucket, keep the total count
● Assume uniformity within a bucket

20000- 20200- 20400- 20600- 20800-
 20199 20399 20599 20799 20999

50,000

40,000

30,000

20,000

10,000

Histograms
● Given a query: zipcode = “ 20742”

● Find the bucket (Number 3)
● Say the associated count = 45000
● Assume uniform distribution within the bucket: 45,000/200 = 225

20000- 20200- 20400- 20600- 20800-
 20199 20399 20599 20799 20999

50,000

40,000

30,000

20,000

10,000

Histograms
● What if the ranges are typically not full ?

● ie., only a few of the zipcodes are actually in use ?
● With each bucket, also keep the number of distinct values used for zipcodes
● Now the estimate would be: 45,000/80 = 562.50
● More Information  Better estimation

20000- 20200- 20400- 20600- 20800-
 20199 20399 20599 20799 20999

130

42

67

80

40

50,000

40,000

30,000

20,000

10,000

Exam #2
● Functional dependences (extraneous attributes, covers)
● Storage manager
● RAID
● File organization (heap, sorted, hash)
● Indexes (primary / secondary, dense sparse, hash)

● B+-trees: height, cost of access, including xtra leaves
● insertions, deletions

● Query execution (including costs)
● selections
● joins (block nested, hash, merge, index nested..)
● sorts (in-memory, external)

● Query estimation
● histograms
● uniformity
● using attribute stats

● Query optimization
● execution trees
● materialization/pipelining

