Query Optimization

e |ntroduction

Example of a Simple Type of Query
Transformation of Relational Expressions
Optimization Algorithms

Statistics Estimation

Cost estimation

e Computing operator costs requires information like:

Primary key ?
Sorted or not, which attribute
So we can decide whether need to sort again
How many tuples in the relation, how many blocks ?
RAID ?? Which one ?
Read/write costs are quite different
How many tuples match a predicate like “age > 40" ?
E.g. Need to know how many index pages need to be read
Intermediate result sizes

E.g. (RJOIN S) is input to another join operation — need to know if it fits
in memory

And so on...

Cost estimation

e Some info is static and maintained in the metadata
e Primary key ?
» Sorted or not, which attribute
So we can decide whether need to sort again
* How many tuples in the relation, how many blocks ?
« RAID ?? Which one ?
Read/write costs are quite different

e Typically kept in some tables in the database
« “all_tab_columns” in Oracle
« Postgresqgl: analyze cmd updates pg_statistic and pg_stats

e Most systems have commands for updating them

Cost estimation

* Others need to be estimated:
« How many tuples match a predicate like “age > 40" ?
E.g. Need to know how many index pages need to be read
e Intermediate result sizes

e The problem variously called:
* “intermediate result size estimation”
» ‘“selectivity estimation”

e \Very important to estimate reasonably well
* €.Qg. consider “SELECT * FROM R WHERE zipcode = 20742"

« We estimate that there are 10 matches, and choose to use a secondary index
(remember: random 1/Os)

» If turns out there are 10000 matches
* using a secondary index very bad idea...
» Optimizer often choose block-nested-loop joins if one relation very small
... underestimation can be very bad

Selectivity Estimation

e Basic idea:
» Maintain some information about the tables
More information > more accurate estimation
More information = higher storage cost, higher update cost
» Make uniformity and randomness assumptions to fill in the gaps

o Example:

» For arelation “people”, we keep:

Total number of tuples = 100,000

Distinct “zipcode” values that appear in it = 100
« Given a query: “zipcode = 20742”

We estimated the number of matching tuples as: 100,000/100 = 1000
« What if | wanted more accurate information ?

Keep histograms...

Histograms

e A condensed, approximate version of the “frequency distribution”
« Divide the range of the attribute value in “buckets”
» For each bucket, keep the total count
» Assume uniformity within a bucket

50,000

40,000

30,000

20,000

10,000

20000- 20200- 20400- 20600- 20800-
20199 20399 20599 20799 20999

Histograms

o Given a query: zipcode = “ 20742”
« Find the bucket (Number 3)
« Say the associated count = 45000
« Assume uniform distribution within the bucket: 45,000/200 = 225

50,000

40,000

30,000

20,000

10,000
20000- 20200- 20400- 20600- 20800-
20199 20399 20599 20799 20999

Histograms

o What if the ranges are typically not full ?
« ie., only a few of the zipcodes are actually in use ?

* With each bucket, also keep the number of distinct values used for zipcodes

e Now the estimate would be: 45,000/80 = 562.50
e More Information = Better estimation

80
50,000 130

40,000 42

30,000 67

20,000 40

10,000

20000- 20200- 20400- 20600- 20800-
20199 20399 20599 20799 20999

Exam #2

Functional dependences (extraneous attributes, covers)
Storage manager
RAID
File organization (heap, sorted, hash)
Indexes (primary / secondary, dense sparse, hash)
o B+-trees: height, cost of access, including xtra leaves
e insertions, deletions
Query execution (including costs)
e selections
« joins (block nested, hash, merge, index nested..)
e sorts (in-memory, external)
Query estimation
o histograms
e uniformity
e using attribute stats
Query optimization
e execution trees
» materialization/pipelining

Query Optimization

Introduction

Example of a Simple Type of Query
Transformation of Relational Expressions
Optimization Algorithms

Statistics Estimation

Histograms

e \Very widely used in practice
» One-dimensional histograms kept on almost all columns of interest
ie., the columns that are commonly referenced in queries
» Sometimes: multi-dimensional histograms also make sense
Less commonly used as of now
e Two common types of histograms:
« Equi-depth

The attribute value range partitioned such that each bucket contains about the
same number of values

« Equi-width
The attribute value range partitioned in equal-sized buckets
» More dimensions, etc ...

Estimating Result Sizes...

e Estimating sizes of the results of various operations
e Guiding principle:
» Use all the information available

» Make uniformity and randomness assumptions
otherwise

» Many formulas, but not very complicated...
In most cases, the first thing you think of!

Basic statistics

e Basic information stored for all relations
« n,: number of tuples in a relation r.
« b, number of blocks containing tuples of r.

« [blocking factor of r—i.e., the number of tuples of r that fit into
one block.

* V(A r): number of distinct values that appear in r for attribute A,
same as the size of [],(r).

« MAX(A, r): maximum value of A that appearsin r
o MIN(A, r)
« If tuples of rare stored together physically in a file, then:

Selection Size Estimation

o Opx(N)
n./ V(A,r) : number of records that will satisfy the selection

equality condition on a key attribute: size estimate = 1

o 04, (r) (case of o,_,(r) is symmetric)
- Let cdenote the estimated number of tuples satisfying the condition.
« If min(A,r) and max(A,r) are available in catalog
c=0if v<min(A,r)

v—min(4,r)

" max(4,r) - min(4,r) if min(A,r) <= v <=max(A,r)

¢ = nr otherwise

- If histograms available, can refine above estimate

* Inabsence of any information c is assumed to be n,/2.

Size Estimation of Complex Selections

selectivity(8,) = the probability that a particular tuple in r satisfies ;.

. If s; is the number of satisfying tuples in r, then selectivity (6,) = s; /n,.

e CONJUNCLION: Oy, gor. A on (). ASSUMING independence, estimate of tuples

in the result is:
O BN KO

n.* p,

n

-
o disjunction:oy, 4o, on (). Estimated number of tuples:

x| 1= (1= 20y s (1= 22) (122
n, n, n,

« negation: o_y(r). Estimated number of tuples: n, - size(oy(r))

Estimating Output Sizes: Joins

« RJOINS:Ra=Sa
- |R| = 10,000; |S| = 5000

e CASE 1: ais key for S
» Worst case: each tuple of R joins with exactly one tuple of S
« So:|RJOIN S| = |R| = 10,000

e CASE 2: ais key for R

« Each Stuple can match w/ only a single R tuple.
« So: |RJOIN § = |5 = 5,000

Equi-joins simplify things.

Estimating Output Sizes: Joins

e RJOINS:Ra=Sa
* |R| =10,000; |S| = 5000

 CASE 3: ais not a key for either
» Reason with the distributions on a
e Say: the domain of a: V(a, R) = V(a, S) = 100 (distinct values a can take)
e THEN, assuming uniformity
For each value of a
We have 10,000/100 = 100 tuples of R with that value of a
We have 5000/100 = 50 tuples of S with that value of a
All of these will join with each other, and produce 100 *50 = 5000 for each a
So total number of results in the join:
5000 * 100 (distinct values) = 500,000
« We can improve the accuracy if we know the distributions on a better
Say using a histogram

Estimating Output Sizes: Other Ops

o Projection: [[4(R)
« If no duplicate elimination, THEN |[],(R)| = |R]
« If distinct used (duplicate elimination performed): |[[[,(F)| = V(A, R)

e Set operations: (heuristic upper bounds)
o Union ALL: |RU S| = |R| + [F]
« Intersect ALL: |R N S| = min{|R|, |S|}
* Except ALL: |R-S| = |R]
» Union, Intersection, Except (with duplicate elimination)

Somewhat more complex reasoning based on the frequency
distributions etc...

e Andsoon...

Log Structured Merge (LSM) Tree B+Tree Alternative

o For write-heavy workloads
e also SSDs

o Looking at just inserts/queries Lo f M
emory

» Records inserted first into in-memory tree (LO

tree)
* When in-memory tree is full, records moved to Ly]
disk (L1 tree) Disk
» Be-tree constructed using bottom-up build by
merging existing L, tree with records from L tree I
2
« When L tree exceeds some threshold,

merge into L, tree

* And so on for more levels
« Size threshold for L | tree is k times size Ls
threshold for L tree
« A query is applied to all trees L through L,

. butamatchin L; means Lj s.t. j>i ignored

Log Structured Merge (LSM) Tree B+Tree Alternative

» Benefits of LSM approach
 Inserts are done using only sequential I/O operations
» Leaves are full, avoiding space wastage

» Reduced number of I/O operations per record inserted as
compared to normal B+-tree (each tree written in single write)

e Drawback of LSM approach
» Queries have to search multiple trees
» Entire content of each level copied multiple times

e Many variants, but especially:
e Each query requires lookup on each tree.

e But keys in a disk-only trees can be summarized w/ a
bloom filter

HW 5:4.3

Candidate keys: A, C

g is extraneous in o iff:
F—F,or
(o — 0)* includes p under F

Please make it easier on the graders and
use the algorithm in Figure 8.9

« I logically implies F,

« F, logically implies F'

« no extraneous attributes

« each left side of F, is unique

Please make it easier on the graders and
use the algorithm in Figure 8.9

A—CD,C -+ ABE,BC —+ A AE —+ B

A—CD,C — ABE,BC — A,é — B (E extra)

A — BCD,C — ABE, BC — A (union)
A— BCD,C - ABE,C — A (B extra)

A+=ABCDE in F’

C+=ABCDE in F’

A — BCD,C — ABFE (union) . . .
= Cis candidate key in F
o is extraneous in B iff: A—CD,C — ABE (B extra)
F—F or
at includes o in F’
index data
H W 7 - 5 —"\block 0 block 0
index — data
block 1 lock 1
outer index N

Q5

2 Points

inner index

Calculate the total minimum number of blocks in a multi-level index
(Figure 14.5) if there are 2,000,000 blocks of sorted tuples, and each
block in the inner or outer index can store 500 pointer entries.

Explanation

Figure 14.5 Two-level sparse index.

We would need a ptr to each block of tuples, which means
2,000,000 ptrs. This would require 2,000,000/500 = 4000 inner
index pages, plus 8 more outer index pages = 4008.

HW 7: 8.3

[[Adoms[[oranct[[[}{ [eatifien] [Cic [[} [Einstcin[Jersaid [[i~{[Goud] [Kate] [im}-{ [Mozact] [singh] [[}{ [srinivasan] [Wal]
Node 4 Node 5 Node 6 Node 7 Node 8 lode 9

Q8.3
1 Point

Consider deleting the tuple with the key "Gold". After deleting the
key from Node 7, how would Node 2 be affected (per the algorithm
14.21 in the book)?

O Delete "Gold" and the corresponding pointer from Node 2.
O Replace "Gold" with "Katz" in Node 2.

® No change -- leave "Gold" as is in Node 2.

HW 7: 9.3

o Mzs T T+ 2sIl 28t [—{lss [T I [—=[T4s I] 48 1[5 [-—f[eo [[e2][T
Node 4 Node 5 Node 6 Node 7 Node 8

Q9.3

1 Point

Which of the following sequences of inserts will result in addition of
a new entry to the root?

O 49, 50, 51

@® 30, 20, 21

O 56, 57, 58, 59
24, 30, 26, 40

