Query Optimization

- Introduction
- Example of a Simple Type of Query
- Transformation of Relational Expressions
- Optimization Algorithms
- Statistics Estimation

Cost estimation

- Computing operator costs requires information like:
 - Primary key ?
 - Sorted or not, which attribute
 - So we can decide whether need to sort again
 - How many tuples in the relation, how many blocks?
 - RAID ?? Which one ?
 - Read/write costs are quite different
 - How many tuples match a predicate like "age > 40" ?
 - E.g. Need to know how many index pages need to be read
 - Intermediate result sizes
 - E.g. (R JOIN S) is input to another join operation need to know if it fits in memory
 - And so on...

Cost estimation

- Some info is static and maintained in the metadata
 - Primary key ?
 - Sorted or not, which attribute
 - So we can decide whether need to sort again
 - How many tuples in the relation, how many blocks?
 - RAID ?? Which one ?
 - Read/write costs are quite different
- Typically kept in some tables in the database
 - "all_tab_columns" in Oracle
 - Postgresql: analyze cmd updates pg_statistic and pg_stats
- Most systems have commands for updating them

Cost estimation

- Others need to be estimated:
 - How many tuples match a predicate like "age > 40" ?
 - E.g. Need to know how many index pages need to be read
 - Intermediate result sizes
- The problem variously called:
 - "intermediate result size estimation"
 - "selectivity estimation"
- Very important to estimate reasonably well
 - e.g. consider "SELECT * FROM R WHERE zipcode = 20742"
 - We estimate that there are 10 matches, and choose to use a secondary index (remember: random I/Os)
 - If turns out there are 10000 matches
 - using a secondary index very bad idea...
 - Optimizer often choose block-nested-loop joins if one relation very small
 - ... underestimation can be very bad

Selectivity Estimation

- Basic idea:
 - Maintain some information about the tables
 - More information \rightarrow more accurate estimation
 - More information \rightarrow higher storage cost, higher update cost
 - Make uniformity and randomness assumptions to fill in the gaps

• Example:

- For a relation "people", we keep:
 - Total number of tuples = 100,000
 - Distinct "zipcode" values that appear in it = 100
- Given a query: "zipcode = 20742"
 - We estimated the number of matching tuples as: 100,000/100 = 1000
- What if I wanted more accurate information ?
 - Keep histograms...

Histograms

- A condensed, approximate version of the "frequency distribution"
 - Divide the range of the attribute value in "buckets"
 - For each bucket, keep the total count
 - Assume uniformity within a bucket

Histograms

- Given a query: zipcode = " 20742"
 - Find the bucket (Number 3)
 - Say the associated count = 45000
 - Assume uniform distribution within the bucket: 45,000/200 = 225

Histograms

- What if the ranges are typically not full ?
 - ie., only a few of the zipcodes are actually in use ?
- With each bucket, also keep the number of distinct values used for zipcodes
- Now the estimate would be: 45,000/80 = 562.50
- More Information → Better estimation

Exam #2

- Functional dependences (extraneous attributes, covers)
- Storage manager
- RAID
- File organization (heap, sorted, hash)
- Indexes (primary / secondary, dense sparse, hash)
 - B+-trees: height, cost of access, including xtra leaves
 - insertions, deletions
- Query execution (including costs)
 - selections
 - joins (block nested, hash, merge, index nested..)
 - sorts (in-memory, external)
- Query estimation
 - histograms
 - uniformity
 - using attribute stats
- Query optimization
 - execution trees
 - materialization/pipelining

Query Optimization

- Introduction
- Example of a Simple Type of Query
- Transformation of Relational Expressions
- Optimization Algorithms
- Statistics Estimation

Histograms

- Very widely used in practice
 - One-dimensional histograms kept on almost all columns of interest
 - ie., the columns that are commonly referenced in queries
 - Sometimes: multi-dimensional histograms also make sense
 - Less commonly used as of now
- Two common types of histograms:
 - Equi-depth
 - The attribute value range partitioned such that each bucket contains about the same number of values
 - Equi-width
 - The attribute value range partitioned in equal-sized buckets
 - More dimensions, etc ...

Estimating Result Sizes...

- Estimating sizes of the results of various operations
- Guiding principle:
 - Use all the information available
 - Make uniformity and randomness assumptions otherwise
 - Many formulas, but not very complicated...
 - In most cases, the first thing you think of!

Basic statistics

- Basic information stored for all relations
 - n_r : number of tuples in a relation r.
 - *b_r*: number of blocks containing tuples of *r*.
 - *f_r*: blocking factor of *r* i.e., the number of tuples of *r* that fit into one block.
 - V(A, r): number of distinct values that appear in *r* for attribute *A*; same as the size of $\prod_{A}(r)$.
 - MAX(A, r): maximum value of A that appears in r
 - *MIN(A, r)*
 - If tuples of *r* are stored together physically in a file, then:

$$b_{r} = \left[\frac{n_{r}}{f_{r}}\right]$$

Selection Size Estimation

- $\sigma_{A=X}(r)$
 - $n_r / V(A, r)$: number of records that will satisfy the selection
 - equality condition on a key attribute: *size estimate* = 1
- $\sigma_{A \leq v}(r)$ (case of $\sigma_{A \geq v}(r)$ is symmetric)
 - Let *c* denote the estimated number of tuples satisfying the condition.
 - If *min(A,r)* and *max(A,r)* are available in catalog

•
$$c = n_r \cdot \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$$
 if $\min(A, r) \le v \le \max(A, r)$

- $c = n_r$ otherwise
- If histograms available, can refine above estimate
- In absence of *any* information *c* is assumed to be $n_r/2$.

Size Estimation of Complex Selections

- selectivity(θ_i) = the probability that a particular tuple in *r* satisfies θ_i .
 - If s_i is the number of satisfying tuples in *r*, then selectivity $(\theta_i) = s_i / n_r$.
- conjunction: σ_{θ1Λ θ2Λ...Λθn} (r). Assuming independence, estimate of tuples in the result is:

$$n_r * \frac{S_1 * S_2 * \dots * S_n}{n_r^n}$$

• disjunction: $\sigma_{\theta_{1}v} \theta_{\theta_{2}v} (r)$. Estimated number of tuples:

$$n_r * \left(1 - \left(1 - \frac{s_1}{n_r}\right) * \left(1 - \frac{s_2}{n_r}\right) * \dots * \left(1 - \frac{s_n}{n_r}\right) \right)$$

• negation: $\sigma_{-\theta}(r)$. Estimated number of tuples: $n_r - size(\sigma_{\theta}(r))$

Estimating Output Sizes: Joins

- R JOIN S: *R.a* = *S.a*
 - |R| = 10,000; |S| = 5000
- CASE 1: *a* is key for S
 - Worst case: each tuple of R joins with exactly one tuple of S
 - So: |*R* JOIN *S*| = |*R*| = 10,000
- CASE 2: *a* is key for R
 - Each S tuple can match w/ only a single R tuple.
 - So: |R JOIN S| = |S| = 5,000

Equi-joins simplify things.

Estimating Output Sizes: Joins

- R JOIN S: R.a = S.a
 - |R| = 10,000; |S| = 5000
- CASE 3: *a* is not a key for either
 - Reason with the distributions on a
 - Say: the domain of a: V(a, R) = V(a, S) = 100 (distinct values a can take)
 - THEN, assuming uniformity
 - For each value of a
 - We have 10,000/100 = 100 tuples of R with that value of a
 - We have 5000/100 = 50 tuples of S with that value of a
 - All of these will join with each other, and produce $100 \times 50 = 5000$ for each a
 - So total number of results in the join:
 - 5000 * 100 (distinct values) = 500,000
 - We can improve the accuracy if we know the distributions on a better
 - Say using a histogram

Estimating Output Sizes: Other Ops

- Projection: $\prod_{A}(R)$
 - If no duplicate elimination, THEN $|\prod_A(R)| = |\mathsf{R}|$
 - If *distinct* used (duplicate elimination performed): $|\prod_A(R)| = V(A, R)$

• Set operations:

(heuristic upper bounds)

- Union ALL: $|R \cup S| = |R| + |S|$
- Intersect ALL: $|R \cap S| = \min\{|R|, |S|\}$
- Except ALL: |R S| = |R|
- Union, Intersection, Except (with duplicate elimination)
 - Somewhat more complex reasoning based on the frequency distributions etc...
- And so on ...

Log Structured Merge (LSM) Tree B+Tree Alternative

- For write-heavy workloads
 - also SSDs
- Looking at just inserts/queries
 - Records inserted first into in-memory tree (L0 tree)
 - When in-memory tree is full, records moved to disk (L1 tree)
 - B-tree constructed using bottom-up build by merging existing L1 tree with records from L0 tree
- When L, tree exceeds some threshold, merge into L, tree
 - And so on for more levels
 - Size threshold for L_{i+1} tree is k times size threshold for L_i tree
- A query is applied to all trees L_0 through L_n
 - but a match in L_i means L_j s.t. j>i ignored

Log Structured Merge (LSM) Tree B+Tree Alternative

- Benefits of LSM approach
 - Inserts are done using only sequential I/O operations
 - Leaves are full, avoiding space wastage
 - Reduced number of I/O operations per record inserted as compared to normal B+-tree (each tree written in single write)
- Drawback of LSM approach
 - Queries have to search multiple trees
 - Entire content of each level copied multiple times
- Many variants, but especially:
 - Each query requires lookup on each tree.
 - But keys in a disk-only trees can be summarized w/ a bloom filter

