
Query Optimization
● Introduction
● Example of a Simple Type of Query
● Transformation of Relational Expressions
● Optimization Algorithms
● Statistics Estimation

Cost estimation
● Computing operator costs requires information like:

● Primary key ?
● Sorted or not, which attribute

● So we can decide whether need to sort again
● How many tuples in the relation, how many blocks ?
● RAID ?? Which one ?

● Read/write costs are quite different
● How many tuples match a predicate like “age > 40” ?

● E.g. Need to know how many index pages need to be read
● Intermediate result sizes

● E.g. (R JOIN S) is input to another join operation – need to know if it fits
in memory

● And so on…

Cost estimation
● Some info is static and maintained in the metadata

● Primary key ?
● Sorted or not, which attribute

● So we can decide whether need to sort again
● How many tuples in the relation, how many blocks ?
● RAID ?? Which one ?

● Read/write costs are quite different

● Typically kept in some tables in the database
● “all_tab_columns” in Oracle
● Postgresql: analyze cmd updates pg_statistic and pg_stats

● Most systems have commands for updating them

Cost estimation
● Others need to be estimated:

● How many tuples match a predicate like “age > 40” ?
● E.g. Need to know how many index pages need to be read

● Intermediate result sizes
● The problem variously called:

● “intermediate result size estimation”
● “selectivity estimation”

● Very important to estimate reasonably well
● e.g. consider “SELECT * FROM R WHERE zipcode = 20742”
● We estimate that there are 10 matches, and choose to use a secondary index

(remember: random I/Os)
● If turns out there are 10000 matches

● using a secondary index very bad idea…
● Optimizer often choose block-nested-loop joins if one relation very small
… underestimation can be very bad

Selectivity Estimation
● Basic idea:

● Maintain some information about the tables
● More information  more accurate estimation
● More information  higher storage cost, higher update cost

● Make uniformity and randomness assumptions to fill in the gaps

● Example:
● For a relation “people”, we keep:

● Total number of tuples = 100,000
● Distinct “zipcode” values that appear in it = 100

● Given a query: “zipcode = 20742”
● We estimated the number of matching tuples as: 100,000/100 = 1000

● What if I wanted more accurate information ?
● Keep histograms…

Histograms
● A condensed, approximate version of the “frequency distribution”

● Divide the range of the attribute value in “buckets”
● For each bucket, keep the total count
● Assume uniformity within a bucket

20000- 20200- 20400- 20600- 20800-
 20199 20399 20599 20799 20999

50,000

40,000

30,000

20,000

10,000

Histograms
● Given a query: zipcode = “ 20742”

● Find the bucket (Number 3)
● Say the associated count = 45000
● Assume uniform distribution within the bucket: 45,000/200 = 225

20000- 20200- 20400- 20600- 20800-
 20199 20399 20599 20799 20999

50,000

40,000

30,000

20,000

10,000

Histograms
● What if the ranges are typically not full ?

● ie., only a few of the zipcodes are actually in use ?
● With each bucket, also keep the number of distinct values used for zipcodes
● Now the estimate would be: 45,000/80 = 562.50
● More Information  Better estimation

20000- 20200- 20400- 20600- 20800-
 20199 20399 20599 20799 20999

130

42

67

80

40

50,000

40,000

30,000

20,000

10,000

Exam #2
● Functional dependences (extraneous attributes, covers)
● Storage manager
● RAID
● File organization (heap, sorted, hash)
● Indexes (primary / secondary, dense sparse, hash)

● B+-trees: height, cost of access, including xtra leaves
● insertions, deletions

● Query execution (including costs)
● selections
● joins (block nested, hash, merge, index nested..)
● sorts (in-memory, external)

● Query estimation
● histograms
● uniformity
● using attribute stats

● Query optimization
● execution trees
● materialization/pipelining

Query Optimization
● Introduction
● Example of a Simple Type of Query
● Transformation of Relational Expressions
● Optimization Algorithms
● Statistics Estimation

Histograms
● Very widely used in practice

● One-dimensional histograms kept on almost all columns of interest
● ie., the columns that are commonly referenced in queries

● Sometimes: multi-dimensional histograms also make sense
● Less commonly used as of now

● Two common types of histograms:
● Equi-depth

● The attribute value range partitioned such that each bucket contains about the
same number of values

● Equi-width
● The attribute value range partitioned in equal-sized buckets

● More dimensions, etc …

Estimating Result Sizes…
● Estimating sizes of the results of various operations
● Guiding principle:

● Use all the information available
● Make uniformity and randomness assumptions

otherwise
● Many formulas, but not very complicated…

● In most cases, the first thing you think of!

Basic statistics
● Basic information stored for all relations

● nr: number of tuples in a relation r.
● br: number of blocks containing tuples of r.
● fr: blocking factor of r — i.e., the number of tuples of r that fit into

one block.
● V(A, r): number of distinct values that appear in r for attribute A;

same as the size of ∏A(r).
● MAX(A, r): maximum value of A that appears in r
● MIN(A, r)
● If tuples of r are stored together physically in a file, then:

⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢

⎢

⎡
=
rf
rnrb

● σA=X (r)

● nr / V(A,r) : number of records that will satisfy the selection
● equality condition on a key attribute: size estimate = ?

● σA≤v (r) (case of σA ≥ v (r) is symmetric)
● Let c denote the estimated number of tuples satisfying the condition.
● If min(A,r) and max(A,r) are available in catalog

● c = 0 if v < min(A,r)

● c = if min(A,r) <= v <= max(A,r)

● c = nr otherwise

● If histograms available, can refine above estimate
● In absence of any information c is assumed to be nr / 2.

Selection Size Estimation

),min(),max(
),min(

.
rArA

rAvnr −

−

1

Size Estimation of Complex Selections
● selectivity(θi) = the probability that a particular tuple in r satisfies θi .

● If si is the number of satisfying tuples in r, then selectivity (θi) = si /nr.

● conjunction: σθ1∧ θ2∧. . . ∧ θn (r). Assuming independence, estimate of tuples
in the result is:

● disjunction:σθ1∨ θ2 ∨. . . ∨ θn (r). Estimated number of tuples:

● negation: σ¬θ(r). Estimated number of tuples: nr – size(σθ(r))

n
r

n
r n

sssn ∗∗∗
∗

 . . . 21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∗∗−∗−−∗)1(...)1()1(1 21

r

n

rr
r n

s
n
s

n
sn

Estimating Output Sizes: Joins
● R JOIN S: R.a = S.a

● |R| = 10,000; |S| = 5000

● CASE 1: a is key for S
● Worst case: each tuple of R joins with exactly one tuple of S
● So: |R JOIN S| = |R| = 10,000

● CASE 2: a is key for R
● Each S tuple can match w/ only a single R tuple.
● So: |R JOIN S| = |S| = 5,000

Equi-joins simplify things.

● R JOIN S: R.a = S.a
● |R| = 10,000; |S| = 5000

● CASE 3: a is not a key for either
● Reason with the distributions on a
● Say: the domain of a: V(a, R) = V(a, S) = 100 (distinct values a can take)
● THEN, assuming uniformity

● For each value of a
▪ We have 10,000/100 = 100 tuples of R with that value of a
▪ We have 5000/100 = 50 tuples of S with that value of a
▪ All of these will join with each other, and produce 100 *50 = 5000 for each a

● So total number of results in the join:
▪ 5000 * 100 (distinct values) = 500,000

● We can improve the accuracy if we know the distributions on a better
● Say using a histogram

Estimating Output Sizes: Joins

● Projection: ∏A(R)
● If no duplicate elimination, THEN |∏A(R)| = |R|
● If distinct used (duplicate elimination performed): |∏A(R)| = V(A, R)

● Set operations: (heuristic upper bounds)
● Union ALL: |R ∪ S| = |R| + |S|
● Intersect ALL: |R ∩ S| = min{|R|, |S|}
● Except ALL: |R – S| = |R|
● Union, Intersection, Except (with duplicate elimination)

● Somewhat more complex reasoning based on the frequency
distributions etc…

● And so on …

Estimating Output Sizes: Other Ops

Log Structured Merge (LSM) Tree B+Tree Alternative

● For write-heavy workloads
● also SSDs

● Looking at just inserts/queries
● Records inserted first into in-memory tree (L0

tree)

● When in-memory tree is full, records moved to
disk (L1 tree)

● B+-tree constructed using bottom-up build by
merging existing L

1
 tree with records from L

0
 tree

● When L
1
 tree exceeds some threshold,

merge into L
2
 tree

● And so on for more levels

● Size threshold for L
i+1

 tree is k times size
threshold for L

i
 tree

● A query is applied to all trees through

● but a match in means ignored

L0 Ln

Li Lj s.t. j>i

● Benefits of LSM approach
● Inserts are done using only sequential I/O operations
● Leaves are full, avoiding space wastage
● Reduced number of I/O operations per record inserted as

compared to normal B+-tree (each tree written in single write)
● Drawback of LSM approach

● Queries have to search multiple trees
● Entire content of each level copied multiple times

● Many variants, but especially:
● Each query requires lookup on each tree.
● But keys in a disk-only trees can be summarized w/ a

bloom filter

Log Structured Merge (LSM) Tree B+Tree Alternative

HW 5:4.3

Candidate keys: A, C

A+=ABCDE in F’

C+=ABCDE in F’

C is candidate key in F

HW 7: 5

HW 7: 8.3

HW 7: 9.3

