
Query Optimization
● Introduction 
● Example of a Simple Type of Query 
● Transformation of Relational Expressions 
● Optimization Algorithms 
● Statistics Estimation

Cost estimation
● Computing operator costs requires information like: 

● Primary key ?  
● Sorted or not, which attribute 

● So we can decide whether need to sort again 
● How many tuples in the relation, how many blocks ? 
● RAID ?? Which one ?  

● Read/write costs are quite different 
● How many tuples match a predicate like “age > 40” ? 

● E.g. Need to know how many index pages need to be read 
● Intermediate result sizes 

● E.g. (R JOIN S) is input to another join operation – need to know if it fits 
in memory 

● And so on…



Cost estimation
● Some info is static and maintained in the metadata 

● Primary key ?  
● Sorted or not, which attribute 

● So we can decide whether need to sort again 
● How many tuples in the relation, how many blocks ? 
● RAID ?? Which one ?  

● Read/write costs are quite different 

● Typically kept in some tables in the database 
● “all_tab_columns” in Oracle 
● Postgresql: analyze cmd updates pg_statistic and pg_stats 

● Most systems have commands for updating them

Cost estimation
● Others need to be estimated: 

● How many tuples match a predicate like “age > 40” ? 
● E.g. Need to know how many index pages need to be read 

● Intermediate result sizes 
● The problem variously called: 

● “intermediate result size estimation” 
● “selectivity estimation” 

● Very important to estimate reasonably well 
● e.g. consider “SELECT * FROM R WHERE zipcode = 20742” 
● We estimate that there are 10 matches, and choose to use a secondary index 

(remember: random I/Os) 
● If turns out there are 10000 matches 

● using a secondary index very bad idea… 
● Optimizer often choose block-nested-loop joins if one relation very small 
… underestimation can be very bad



Selectivity Estimation
● Basic idea: 

● Maintain some information about the tables 
● More information  more accurate estimation 
● More information  higher storage cost, higher update cost 

● Make uniformity and randomness assumptions to fill in the gaps 

● Example: 
● For a relation “people”, we keep: 

● Total number of tuples = 100,000 
● Distinct “zipcode” values that appear in it = 100 

● Given a query: “zipcode = 20742” 
● We estimated the number of matching tuples as: 100,000/100 = 1000 

● What if I wanted more accurate information ? 
● Keep histograms…

Histograms
● A condensed, approximate version of the “frequency distribution” 

● Divide the range of the attribute value in “buckets” 
● For each bucket, keep the total count 
● Assume uniformity within a bucket
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Histograms
● Given a query: zipcode = “ 20742” 

● Find the bucket (Number 3) 
● Say the associated count = 45000 
● Assume uniform distribution within the bucket: 45,000/200 = 225
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Histograms
● What if the ranges are typically not full ? 

● ie., only a few of the zipcodes are actually in use ? 
● With each bucket, also keep the number of distinct values used for zipcodes 
● Now the estimate would be: 45,000/80 = 562.50 
● More Information  Better estimation 
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Exam #2
● Functional dependences (extraneous attributes, covers) 
● Storage manager 
● RAID 
● File organization (heap, sorted, hash) 
● Indexes (primary / secondary, dense sparse, hash) 

● B+-trees: height, cost of access, including xtra leaves 
● insertions, deletions 

● Query execution (including costs) 
● selections 
● joins (block nested, hash, merge, index nested..) 
● sorts (in-memory, external) 

● Query estimation 
● histograms 
● uniformity 
● using attribute stats 

● Query optimization 
● execution trees 
● materialization/pipelining

Query Optimization
● Introduction 
● Example of a Simple Type of Query 
● Transformation of Relational Expressions 
● Optimization Algorithms 
● Statistics Estimation



Histograms
● Very widely used in practice 

● One-dimensional histograms kept on almost all columns of interest 
● ie., the columns that are commonly referenced in queries 

● Sometimes: multi-dimensional histograms also make sense 
● Less commonly used as of now 

● Two common types of histograms: 
● Equi-depth 

● The attribute value range partitioned such that each bucket contains about the 
same number of values 

● Equi-width 
● The attribute value range partitioned in equal-sized buckets 

● More dimensions, etc …

Estimating Result Sizes…
● Estimating sizes of the results of various operations 
● Guiding principle: 

● Use all the information available 
● Make uniformity and randomness assumptions 

otherwise 
● Many formulas, but not very complicated… 

● In most cases, the first thing you think of!



Basic statistics
● Basic information stored for all relations 

● nr:  number of tuples in a relation r. 
● br: number of blocks containing tuples of r. 
● fr: blocking factor of r — i.e., the number of tuples of r that fit into 

one block. 
● V(A, r): number of distinct values that appear in r for attribute A; 

same as the size of ∏A(r). 
● MAX(A, r): maximum value of A that appears in r 
● MIN(A, r) 
● If tuples of r are stored together physically in a file, then:  
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● σA=X (r) 

● nr / V(A,r) : number of records that will satisfy the selection 
● equality condition on a key attribute: size estimate = ? 

● σA≤v (r) (case of σA ≥ v (r) is symmetric) 
● Let c denote  the estimated number of tuples satisfying the condition.  
● If min(A,r) and max(A,r) are available in catalog 

● c = 0 if v < min(A,r) 

● c =                                           if min(A,r) <= v <= max(A,r) 

● c = nr  otherwise 

● If histograms available, can refine above estimate 
● In absence of any information c is assumed to be nr / 2. 

Selection Size Estimation
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Size Estimation of Complex Selections
● selectivity(θi )  = the probability that a particular tuple in r satisfies θi .  

●  If si  is the number of satisfying tuples in r, then selectivity (θi) = si /nr. 

● conjunction:  σθ1∧ θ2∧. . . ∧ θn (r).  Assuming independence, estimate of tuples 
in the result is: 

● disjunction:σθ1∨ θ2 ∨. . . ∨ θn (r).   Estimated number of tuples: 
 
 

● negation:  σ¬θ(r).  Estimated number of tuples:  nr – size(σθ(r))
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Estimating Output Sizes: Joins
● R JOIN S: R.a = S.a 

● |R| = 10,000; |S| = 5000 

● CASE 1: a is key for S 
● Worst case: each tuple of R joins with exactly one tuple of S 
● So: |R JOIN S| = |R| = 10,000 

● CASE 2: a is key for R 
● Each S tuple can match w/ only a single R tuple. 
● So: |R JOIN S| = |S| = 5,000 

Equi-joins simplify things.



● R JOIN S: R.a = S.a 
● |R| = 10,000; |S| = 5000 

● CASE 3: a is not a key for either 
● Reason with the distributions on a 
● Say: the domain of a: V(a, R) = V(a, S) = 100 (distinct values a can take) 
● THEN, assuming uniformity 

● For each value of a 
▪ We have 10,000/100 = 100 tuples of R with that value of a 
▪ We have 5000/100 = 50 tuples of S with that value of a 
▪ All of these will join with each other, and produce 100 *50 = 5000 for each a 

● So total number of results in the join: 
▪ 5000 * 100 (distinct values) = 500,000 

● We can improve the accuracy if we know the distributions on a better 
● Say using a histogram

Estimating Output Sizes: Joins

● Projection: ∏A(R) 
● If no duplicate elimination, THEN |∏A(R)| = |R| 
● If distinct used (duplicate elimination performed): |∏A(R)| = V(A, R) 

● Set operations:                                           (heuristic upper bounds) 
● Union ALL: |R ∪ S| = |R| + |S| 
● Intersect ALL: |R ∩ S| = min{|R|, |S|} 
● Except ALL: |R – S| = |R| 
● Union, Intersection, Except (with duplicate elimination) 

● Somewhat more complex reasoning based on the frequency 
distributions etc… 

● And so on …   

Estimating Output Sizes: Other Ops



Log Structured Merge (LSM) Tree B+Tree Alternative

● For write-heavy workloads 
● also SSDs 

● Looking at just inserts/queries 
● Records inserted first into in-memory tree (L0 

tree) 

● When in-memory tree is full, records moved to 
disk (L1 tree) 

● B+-tree constructed using bottom-up build by 
merging existing L

1
 tree with records from L

0
 tree 

● When L
1
 tree exceeds some threshold, 

merge into L
2
 tree 

● And so on for more levels 

● Size threshold for L
i+1

 tree is k times size 
threshold for L

i
 tree 

● A query is applied to all trees  through  

● but a match in  means  ignored

L0 Ln

Li Lj s.t. j>i

● Benefits of LSM approach 
● Inserts are done using only sequential I/O operations 
● Leaves are full, avoiding space wastage 
● Reduced number of I/O operations per record inserted as 

compared to normal B+-tree (each tree written in single write) 
● Drawback of LSM approach 

● Queries have to search multiple trees 
● Entire content of each level copied multiple times 

● Many variants, but especially: 
● Each query requires lookup on each tree.  
● But keys in a disk-only trees can be summarized w/ a 

bloom filter

Log Structured Merge (LSM) Tree B+Tree Alternative
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Candidate keys:  A, C

A+=ABCDE in F’

C+=ABCDE in F’

C is candidate key in F
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