
Transactions

Transaction Concept
● A transaction is a unit of program execution that accesses

and possibly updates various data items.
● E.g. transaction to transfer $50 from account A to account B:

begin
read(A)
A := A – 50
write(A)
read(B)
B := B + 50
write(B)

end
● Two main issues to deal with:

● Failures of various kinds, such as hardware failures and system crashes
● Concurrent execution of multiple transactions

Overview
● Transaction: A sequence of database actions enclosed within

special tags
● Properties:

● Atomicity: Entire transaction or nothing
● Consistency: Transaction, executed completely, takes database from one

consistent state to another
● Isolation: Concurrent transactions appear to run in isolation
● Durability: Effects of committed transactions are not lost

● Consistency: Programmer needs to guarantee this
● DBMS can do a few things, e.g., enforce constraints on the data

● Rest: DBMS guarantees

How does..
● .. this relate to queries that we discussed ?

● Queries don’t update data, so durability and consistency not relevant
● Would want concurrency

● Consider a query computing balance at the end of the day
● Would want isolation

● What if somebody makes a transfer while we are computing the
balance

● Typically not guaranteed for such long-running queries

● TPC-C vs TPC-H
● data entry vs decision support

Assumptions and Goals
● Assumptions:

● The system can crash at any time
● Similarly, the power can go out at any point

● Contents of the main memory won’t survive a crash, or power outage
● BUT… disks are durable. They might stop, but data is not lost.

● For now.
● Disks only guarantee atomic sector writes, nothing more
● Transactions are by themselves consistent

● Goals:
● Guaranteed durability, atomicity
● As much concurrency as possible, while not compromising

isolation and/or consistency
● Two transactions updating the same account balance… NO
● Two transactions updating different account balances… YES

Next…
● Concurrency control schemes

● A CC scheme is used to guarantee that concurrency does not lead to
problems

● For simplicity, we will ignore durability during this section
● So no crashes
● Though transactions may still abort

● Schedules

● When is concurrency okay ?
● Serial schedules
● Serializability

A Schedule

T1
read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Transactions:
 T1: transfers $50 from A to B
 T2: transfers 10% of A to B
Database constraint: A + B is constant (checking+saving accts)

Effect: Before After
A 100 45
B 50 105

Each transaction obeys the
constraint.

The schedule does too.

tim
e

Schedules
● A schedule is simply a (possibly interleaved) execution

sequence of transaction instructions

● Serial Schedule: A schedule in which transactions
appear one after the other
● i.e., No interleaving

● Serial schedules satisfy isolation and consistency
● Since each transaction by itself does not introduce inconsistency

Another serial schedule
T1

read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2
read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Consistent ?
 Constraint is satisfied.

Since each Xion is consistent, any
serial schedule is also consistent

Effect: Before After
 A 100 40
 B 50 110

Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect: Before After
 A 100 45
 B 50 105

Consistent.
So this schedule is okay too.

Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect: Before After
 A 100 45
 B 50 105

Further, the effect same as the
serial schedule 1.

Called serializable

Example Schedules (Cont.)
 A “bad” schedule

Not consistent

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

Effect: Before After
 A 100 50
 B 50 60

Serializability (chapters 17+18)

● A schedule is called serializable if:
● its final effect is the same as that of a serial schedule

● Serializability  database remains consistent
● Since serial schedules are fine

● Non-serializable schedules are unlikely to result in consistent
databases

● We will ensure serializability
● Though typically relaxed in real high-throughput environments...

Serializability
● Not possible to look at all n! serial schedules to check if

the effect is the same
● Instead ensure serializability by disallowing certain schedules

● Conflict serializability

● View serializability
● allows more schedules

Conflict Serializability
● Two read/write instructions “conflict” if

● They are by different transactions
● They operate on the same data item
● At least one is a “write” instruction

● Why do we care ?
● If two read/write instructions don’t conflict, they can be

“swapped” without any change in the final effect
● If they conflict they CAN’T be swapped

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)

B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
 A 100 45
 B 50 105

Effect: Before After
 A 100 45
 B 50 105

==

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)

B = B+ tmp
write(B)

Effect: Before After
 A 100 45
 B 50 105

Effect: Before After
 A 100 45
 B 50 55

! ==

Conflict Serializability
● Conflict-equivalent schedules:

● If S can be transformed into S’ through a series of swaps, S and
S’ are called conflict-equivalent

● conflict-equivalence guarantees same final effect on database

● A schedule S is conflict-serializable if it is conflict-
equivalent to a serial schedule

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
 A 100 45
 B 50 105

Effect: Before After
 A 100 45
 B 50 105

==

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
 A 100 45
 B 50 105

Effect: Before After
 A 100 45
 B 50 105

==

Example Schedules (Cont.)
 A “bad” schedule

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

X

Y Can’t move Y below X
 read(B) and write(B) conflict

Other options don’t work either

Not Conflict Serializable

View-Serializability
● Similarly, following not conflict-serializable

BUT, it is serializable
● Intuitively, this is because the conflicting write instructions don’t matter (in

absence of reads)
● The final write is the only one that matters

● View-serializability, for S’ and S, and each datum Q:
● if Ti reads initial value of Q in S, must also in S’
● if Ti reads value written from Tj in S, must also in S’
● if Ti performs final write to Q in S, must also in S’

Other notions of serializability

● Not conflict-serializable or view-serializable, but serializable
● Mainly because of the +/- only operations

● Requires analysis of the actual operations, not just read/write operations
● Most high-performance transaction systems will allow these
● Conflict-Free Replicated Data Types (CRDTs)

Testing for conflict-serializability
1. Draw a precedence-graph over the transactions:

● A directed edge from T1 to T2, iff:
● they have conflicting instructions, and
● T1’s conflicting instruction executed first

2. If there is a cycle in the graph, not conflict-serializable
● Can be checked in at most O(n+e) time, where n is the number

of vertices, and e is the number of edges
3. If there is none, conflict-serializable

● Testing for view-serializability is NP-hard.

 T1 T2 T3 T4 T5

 read(X)
read(Y)
read(Z)
 read(V)
 read(W)
 read(W)
 read(Y)
 write(Y)
 write(Z)
read(U)
 read(Y)
 write(Y)
 read(Z)
 write(Z)
read(U)
write(U)

Example Schedule (Schedule A) + Precedence Graph

T4

T1 T2

Y

Y

T3

Z

Z

No cycle, so
conflict-serializable

