
Transactions
● Serializability 
● Properties 

● recoverability, cascading aborts 
● Concurrency control via locks 

● strict, rigorous 
● Deadlocks 
● Weakening Guarantees 
● Recovery 

T1 
read(A) 
A = A - 50 
write(A) 

read(B) 
B=B+50 
write(B)

T2 

read(A) 
tmp = A*0.1 
A = A – tmp 
write(A)

Recoverability
● Serializability is good for 

consistency 

● What if transactions fail ? 
● T2 has already committed 

● A user might have been notified 
● Now T1 abort creates a problem 

● T2 has seen its effect, so just 
aborting T1 is not enough. T2 
must be aborted as well (and 
possibly restarted) 

● But T2 is committed

ABORT

COMMIT



Recoverability
● Recoverable schedule: If T1 has read something T2 has 

written, T2 must commit before T1 
● Otherwise, if T1 commits, and T2 aborts, we violate correctness 

● Cascading rollbacks: If T10 aborts, T11 must abort, and 
hence T12 must abort and so on. Performance issue.

Recoverability
Dirty read : Reading a value written by a transaction that hasn’t 
committed yet 

● Recoverability: 
● Guaranteed if a transaction has no dirty reads. 

● Cascadeless schedules guaranteed if: 
● Guaranteed if a transaction has no dirty reads. 

● Cascadeless  No cascading rollbacks 
● That’s good 
● We will try to guarantee that as well



Recap so far…
● We discussed: 

● Serial schedules, serializability 
● Conflict-serializability, view-serializability 
● How to check for conflict-serializability 
● Recoverability, cascade-less schedules 

● We haven’t discussed: 
● How to guarantee serializability ? 

● Could allow transactions to run, abort them if not serializable 
● Expensive 

● We can instead use schemes to guarantee that the schedule will be 
conflict-serializable 
● Hint: locks

Approach, Assumptions etc..
● Approach 

● Guarantee conflict-serializability by limiting concurrency  
● instead of detecting after the fact 
● lock-based 

● Assumptions: 
● Still ignoring durability 

● So no crashes 
● Though transactions may still abort 

● Goal: 
● Serializability 
● Minimize the bad effect of aborts (cascade-less schedules only) 



Lock-based Protocols
● Transactions must acquire locks before using data 

● locking usually handled by transaction statements 
● Two types: 

● Shared (S) locks (read locks) 
● Obtained if we want to only read an item 

● Exclusive (X) locks (write locks) 
● Obtained for updating a data item

Lock instructions
● New instructions 

- lock-S: shared lock request 
- lock-X: exclusive lock request 
- unlock: release previously held lock 

Example transactions:

read(B) 
B B-50 
write(B) 
read(A) 
A A + 50 
write(A)

read(A) 
read(B) 
display(A+B)

T1 T2

Not a schedule



Lock instructions
● New instructions 

- lock-S: shared lock request 
- lock-X: exclusive lock request 
- unlock: release previously held lock 

Example transactions:

lock-X(B) 
read(B) 
B B-50 
write(B) 
unlock(B) 

lock-X(A) 
read(A) 
A A + 50 
write(A) 
unlock(A)

lock-S(A) 
read(A) 
unlock(A) 
lock-S(B) 
read(B) 
unlock(B) 
display(A+B)

T1 T2

Not a schedule

Lock-based Protocols
● Lock requests are made to the concurrency control manager 

● It decides whether to grant a lock request 
● Assume T1 requests lock held by T2 : 

● If compatible, grant the lock, otherwise T1 waits in a queue.

Held lock Lock wanted Allow?

Shared Shared  YES

Shared Exclusive NO

Exclusive - NO



Lock instructions

lock-X(B) 
read(B) 
B B-50 
write(B) 
unlock(B) 

lock-X(A) 
read(A) 
A A + 50 
write(A) 
unlock(A)

lock-S(A) 
read(A) 
unlock(A) 

lock-S(B) 
read(B) 
unlock(B) 
display(A+B)

T1 T2

Potential schedule

Good!

Lock instructions

lock-X(B) 
read(B) 
B B-50 
write(B) 
unlock(B) 

lock-X(A) 
read(A) 
A A + 50 
write(A) 
unlock(A)

lock-S(A) 
read(A) 
unlock(A) 

lock-S(B) 
read(B) 
unlock(B) 
display(A+B)

T1 T2

Potential schedule

Good!



Lock instructions

lock-X(B) 
read(B) 
B B-50 
write(B) 
unlock(B) 

lock-X(A) 
read(A) 
A A + 50 
write(A) 
unlock(A)

lock-S(A) 
read(A) 
unlock(A) 

lock-S(B) 
read(B) 
unlock(B) 
display(A+B)

T1 T2

Not good!

Potential schedule

2-Phase Locking Protocol (2PL)
● Phase 1: Growing phase 

● Transaction may obtain locks 
● But may not release them 

● Phase 2: Shrinking phase 
● Only release locks 

● 2PL guarantees conflict-
serializability 
● lock-point: the time at which a 

transaction acquired last lock 
● if lock-point (T1) < lock-point (T2), 

there can’t be an edge from T2 to 
T1 in the precedence graph

lock-X(B) 
read(B) 
B B-50 
write(B) 
unlock(B) 

lock-X(A) 
read(A) 
A A + 50 
write(A) 
unlock(A)

T1

not allowed



Lockpoints Intuition  
(pseudo-proof by contradiction)

T1 T2

lock(x)

write(x)

unlock(x)
T1’s lockpoint must be before T2’s, 
because T1 already in shrinking 
phase, T2 still growing phase

lock(x)

read(x)

precedence edge

But if we also have an edge from T2 to T1: 
  T2’s lockpoint must also be before T1’s.    
  Contradiction! 
Cycle requires edge and it’s reverse, but 
we just showed this can’t happen, so…. 
  conflict-serializable.

Back to locking: 2 Phase Locking
● Guarantees conflict-serializability 
● Does not  guarantee 

● recoverability 
● cascade-less schedules

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

lock-X(A)
read(A)
write(A)
unlock(A)
commit lock-S(A)

read(A)
commit 

<fail>



2 Phase Locking
● How to guarantee recoverability: 

● If T2 performs a dirty read from T1, then: 
● T2 can’t commit until T1 either commits or aborts 

▪ If T1 commits, T2 can proceed with committing 
▪ If T1 aborts, T2 must abort 

● So … cascades still happen

Strict 2PL

Strict 2PL 
will not  

allow that

● Release exclusive locks only at the very 
end, atomically with commit or abort

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction aborts>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit 



Strict 2PL

● Release exclusive locks only at the very end 
● Atomically with commit or abort 

● Guarantees recoverable and cascade-less schedules

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)
commit

lock-X(A)
read(A)
write(A)
unlock(A)
commit

lock-S(A)
read(A)
commit 

Rigorous 2PL
T1 T2

lock-X(A)
lock-S(B)
read(B)
unlock(B)

…

write(A)
unlock(A)
commit

lock-X(B)
write(B)
unlock(B)
commit

Beginning timestamp order? 
• T1 -> T2 

Commit order? 
• T2 -> T1 

Weird.



Rigorous 2PL

● Also hold shared locks until the end 
● serialization order == the commit order 

● More intuitive for users

T1 T2
lock-X(A)
lock-S(B)
read(B)

…

write(A)
unlock(A), unlock(B)
commit

lock-X(B)
write(B)
unlock(B)
commit

Beginning timestamp order? 
• T1 -> T2 

Commit order? 
• T2 -> T1 

Weird.

Strict 2PL
● Release exclusive locks only at the very 

end, just before commit or abort 
● Read locks are ignored 

Rigorous 2PL:  
● Release both exclusive and read locks only 

at the very end 
● Makes serialization order == commit order 
● More intuitive behavior for the users



Lock Conversion/Upgrading
● Transaction might not be sure what it needs a 

write lock on 

● Start with a S lock  

● Upgrade to an X lock later if needed 

● Doesn’t change any of the other properties of 
the protocol

Recap so far…
● Concurrency Control Scheme 

● A way to guarantee serializability, recoverability etc 

● Lock-based protocols 
● Use locks to prevent multiple transactions accessing the 

same data items 

● 2 Phase Locking 
● Locks acquired during growing phase, released during 

shrinking phase 

● Strict 2PL, Rigorous 2PL



Transactions
● Serializability 
● Properties 

● recoverability, cascading aborts 
● Concurrency control via locks 

● strict, rigorous, intention 
● Deadlocks 
● Weakening Guarantees 
● Recovery 

Locking granularity
● Locking granularity 

● What are we taking locks on ? Tables, tuples, attributes ? 

● Coarse granularity 
● e.g. take locks on tables 
● less overhead (the number of tables is not that high) 
● very low concurrency 

● Fine granularity 
● e.g. take locks on tuples 
● much higher overhead 
● much higher concurrency 
● What if I want to lock 90% of the tuples of a table ? 

● Prefer to lock the whole table in that case

(not always done)



Granularity Hierarchy

   The highest level in the example hierarchy is the entire database. 
   The levels below are of relation and tuple  in that order. 
   Can lock at any level in the hierarchy.

● New lock mode, called intention locks 
● Declare an intention to lock parts of the subtree below a node 
● IS: intention shared 

● The lower levels below may be locked in the shared mode 
● IX: intention exclusive 
● SIX: shared and intention-exclusive 

● The entire subtree is locked in the shared mode, but might also want 
exclusive locks on some nodes below 

● Protocol: 
● Before acquiring a lock on a data item, all the ancestors must be 

locked as well, at least in intention mode  
● Lock acquisition order is from the root down to the desired node.

Intention Locks



Intention Locks

(1) Want to lock t1 in shared mode, DB and then R1 must be locked in at least IS 
mode (but IX, SIX, S, X are okay too), then t1 in S mode. 

(2) Want to lock t4 in exclusive mode, DB and then R2 must be locked in at least IX 
mode (SIX, X are okay too), then t4 must be locked in X mode. 

all the ancestors must be locked 
as well, at least in intention mode

Compatibility Matrix with Intention Lock Modes

● Locks from different transactions:

IS IX S SIX X 

IS

IX

S

SIX

X 

✓

✓

✓

✓

×

✓ ✓ ✓

✓

✓×

×

× × × ×

×× ×

× ×

×

×

××
holder

requestor



● Assume: 
● T1 wants shared lock on t2 
● T2 wants exclusive lock on t4

T1(IS)

T1(S)

Example

R1

t1
t2 t3

t4

, T2(IX)

T2(X)

1

2

1

2

T2(IX)

T2 Needs Locks…But T1 already there…
db

R1 R3 R4R2

t2.1 t2.2 t4.2  t4.2

T1(IX)

T1(IX)

T1(X)

db

R3 R4R2

t2.1 t2.2 t4.2 t4.2

T1(IS)

T1(S)

db

R3 R4R2

t2.1 t2.2 t4.2 t4.2

T1(SIX)

T1(IX)

T1(X)

Can T2 access object t2.2 in X mode?  

What locks will T2 get? 

R1

R1

T2(IX)

T2(IX)

T2(X)

T2(IX)

T2(IX)

X

X



Transactions
● Serializability 
● Properties 

● recoverability, cascading aborts 
● Concurrency control via locks 

● strict, rigorous, intention 
● Deadlocks 
● Weakening Guarantees 
● Recovery 

More Locking Issues: Deadlocks
No xction proceeds 

Deadlock: 
 - T1 waits for T2 to unlock A 
 - T2 waits for T1 to unlock B

T1 T2

lock-X(B)
read(B)
B  B-50
write(B) 

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

Rolling back transactions can be costly...

block

block



Deadlocks
● 2PL does not prevent deadlock 

● Strict doesn’t either
T1 T2

lock-X(B)
read(B)
B  B-50
write(B) 

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

Rolling back transactions can be costly...

Preventing deadlocks
● Graph-based protocols 

● Acquire locks only in a well-known order  

● But might not know locks in advance

T1 T2

lock-X(B)
read(B)
B  B-50
write(B) 

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

bad

T1 T2

lock-X(A)
lock-X(B)
read(B)
B  B-50
write(B) 
… lock-S(A)

read(A)
lock-S(B)

good



Detecting existing deadlocks
● Timeouts (local information) 
● cycles in waits-for graph (global information): 

● edge Ti  Tj when Ti waiting for Tj on locks

T1 T2 T3 T4

S(V)

X(V)

S(W)

X(Z)

S(V)

X(W)

Suppose T4 requests lock-S(Z)....

T1

T2

T3

T4

Dealing with Deadlocks
● Deadlock detected, now what ? 

● Will need to abort some transaction 
● Victim selection 

● Use time-stamps; say T1 is older than T2 
● wait-die scheme:  

● T1 will wait for T2 if T2 has a lock T1 needs.  
● T2 immediately aborts if needs a lock held by T1 

● wound-wait scheme:  
● T1 will wound T2 (force it to abort) if T2 has a lock that T2 needs. 
● T2 waits for T1 if it needs a lock held by T1. 

● Issues 
● Prefer to prefer transactions with the most work done 
● Possibility of starvation 

● If a transaction is aborted too many times, it may be given priority in 
continuing


