Transactions

Other approaches to serialization
Recovery

Snapshot Isolation

e \ery popular scheme, used as the primary scheme by
many systems including Oracle, PostgreSQL etc...

Several others support this in addition to locking-based protocol

o A type of optimistic concurrency control

o Key idea:

For each object, maintain past “versions” of the data along with
timestamps

Every update to an object causes a new version to be generated

Snapshot Isolation

e Read queries:

« Let “t” be the “timestamp” of the query, i.e., the time at which it entered
the system

« When the query asks for a data item, provide a version of the data item
that was latest as of “t”
Even if the data changed in between, provide an old version

» No locks needed, no waiting for any other transactions or queries
» The query executes on a consistent snapshot of the database
» Never aborted
* Update queries (transactions):
» Reads processed as above on a snapshot

» Writes are done in private storage. However, the writes are visible to the
transaction that made them.
« At commit time, for each object that was written, check if some other
transaction updated the data item since this transaction started
If yes, then abort and restart
If no, make all the writes public simultaneously (by making new versions)

Snapshot Isolation

initial values zero

« Logically, T, under Snapshot Isolation: T T2 T3
» takes snapshot of committed data at start W(Y = 1)
» only reads/modifies data in local snapshot '__
e updates of concurrent transactions not Commit
visible to 7 Start
. writes of T} complete when it commits R(X)> 0
» First-committer-wins rule: R(Y)> 1
Commits only if no other concurrent
transaction has already written data W(X:=2)
that 7 intends to write (overlapping W(Z:=3)
writesets) .
. . . Commit
Or: first-writer-wins rule
R(z)> 0
‘R(Y) > 1
o W(X:=3)
Concurrent updates not visible)
Own updates are visible Commit-Req
Not first-committer of X Abort

Serialization error, T2 is rolled back —

Snapshot Isolation

e Advantages: first committer

» Read queries do not block, never abort
» Update transactions don'’t abort as long as conflicts are rare.
» Overall better performance than locking-based protocols
* Major disadvantage:
* Not serializable!

But: x=y=0
T, T,

w(x)1

w(y)1
r(y)o

r(x)0
commit?

commit?

Snapshot |solation impliementation via muiti-version database

o High-level:

e each write to Q creates a new version of Q (old versions
retained)

e reads parameterized by transaction’s timestamp
» satisfied by last write before that timestamp

e Timestamp usage:
e transaction gets StartTS(T;), CommitTS(T)),
o write by T; saved with CommitTS(T;)
e read by T, satisfied by last version w/ time < StartTS(T;)
e as aresult:
e transaction only see writes committed prior to start
e i.e. a snapshot

Snapshot |solation impiementation is via multi-version database

Two validation approaches: first-committer-wins, and first-updater-wins.

T;is said to be concurrent with a transaction T; if timestamps overlap:
StartTS(Tj) < StartTS(T;) < CommitTS(TJ-), or
StartTS(T;) < StartTS(T}) < CommitTS(T))

Under first-committer-wins (the default), T; checks at commit time to see if any
concurrent transaction has written an object that it is trying to write. If so, T; aborts.

Under first-updater-wins, T; checks at each write. Before writing Q, T;:

e Attempts to acquire a write lock on Q. If the lock is acquired, T;aborts if a
concurrent transaction T; has already written Q.

e |f the lock was not successful, T;waits to see if T; commits or aborts. If T;
commits, T;aborts. If T;aborts:

e Tirepeats the check for a concurrent writer having updated Q. If found,
e T;aborts.

® clse
e 7;commits

Snapshot Isolation

o Advantages:
» Read qgueries don't block at all, run fast
» |f conflicts rare, update transactions don'’t abort either
» Overall better performance than locking protocols

e Major disadvantage:
» Not serializable
» Inconsistencies may be introduced

» See the wikipedia article for more details and an example
http://en.wikipedia.org/wiki/Snapshot_isolation

Transactions

Other approaches to serialization
Recovery

Timestamp-Ordering Protocol

No locks

Transactions issued timestamps when started
Timestamps determine the serializability order

If T1 enters before T2, then T1 < T2 in serializability order

Say timestamp(T1) < timestamp(T2)

« |f T1 wants to read data item A

If any transaction with larger timestamp wrote that data item, then this
operation is not permitted, and T1 is aborted

o |f T1 wants to write data item A

If a transaction with larger timestamp already read, or wrote, that data
item, then the write is rejected and T1 is aborted

» Aborted transactions are restarted with a new timestamp
Possibility of starvation
Optimistic

Timestamp-Ordering Protocol

» Example
T, T, T Ty Ts
o read(Y) write(X)
rea
write(Y)
write(Z) ead(2)
read(X)
abort
read
abo(it() write(2)
abort ite(Y)
write
write(Z)

TS(T1) <TS(T2) <TS(T3) <TS(T4) <TS(TH)

Timestamp-Ordering Protocol

* The following set of instructions is not conflict-serializable:

T3 T,
read(Q)
write(Q)
write(Q)

e As discussed before, not even view-serializable:
- if T;reads initial value of Qin S, must also in 8" #——__ 1t potn

- if T;reads value written from Tin S, must also in
« if T, performs final write to Q in S, must also in &’

f’/

possible
at once

Timestamp-Ordering reagiQ) e
e Thomas’ Write Rule write(Q)
» Ignore obsolete writes llgsngr_?j if L w rite (Q)

e Say timestamp(T1) < timestamp(T2)
o |f T1 wants to read data item A

If any transaction with larger timestamp wrote that data item, then
this operation is not permitted, and T1 is aborted

o |If T1 wants to write data item A

If a transaction with larger timestamp already read, erwrete, that
data item, then the write is rejected and T1 is aborted

If a transaction with larger timestamp already written that data
item, then the write is ignored

Timestamp-Ordering Protocol

e As discussed here, has a few issues
« Starvation
« Non-recoverable
« Cascading rollbacks possible

» Most can be solved fairly easily
« Read up

o \We can always add more restrictions to ensure these things

« The goal is to find the minimal set of restrictions to as to not hinder
concurrency

Validation Protocol

o Each transaction T, has 3 timestamps
« Start(T;) : when T, starts execution
« Validation(T;): when T, enters its validation phase
« Finish(T,) : when T, finishes its write phase
» Serializability order = validation order
« TS(T,) = Validation(T,)
 increases concurrency.
e Higher degree of concurrency if conflicts low.

» because the serializability order is not pre-decided, and
» relatively few transactions will have to be rolled back.

Validation Protocol

If for all Tk with TS(Tx) < TS(T)) then validation of Ti succeeds if:
« finish(T,) < start(T)
or:

« the set of data items written by T, does not intersect with the set of data
items read by T. and

« T,completes its write phase before T, starts validation:
start(7)) < finish(T,) < validation(T))

Validation Protocol

e Serialization order?

e [o5< To6

e [o5validates?

e pecause first

e [o5 validates?

e [o5 did not write

Ts Ty

read(B)
read(B)
B:=B-50
read(A4)
A=A+ 50

read(A4)

<validate>

display(4 + B)
<validate>
write(B)
write(4)

. finish(T,) < start(T)
or:

« data items written by T, do not intersect with data items read by T, and

« start(T) < finish(T,) < validation(T))

Validation Protocol

T4 To T3
x=0
<start>
write(X) = 1
<start>
read(X) =0
<validate>
<commit>
<validate> <start>
<abort> read(X) = 1
<validate>
<commit>

. finish(T,) < start(T)
or:

« data items written by T, do not intersect with data items read by T, and

« start(T) < finish(T,) < validation(T))

Weak Levels of Isolation in SQL

e SQL can be parameterized by isolation level:
« Read uncommitted: allows uncommitted writes to be read

» Read committed: only read committed data, repeated reads of same
data might return different values as other transactions commit

» Repeatable read: allows only committed records to be read, and
repeating a read should return the same value

» so read locks should be retained or caching used
« transaction-local writes can change subsequent reads
« Phantom problem not necessarily prevented

= T1 may see some records inserted by T2, but may not see others
inserted by T2

« Serializable: default, strongest (except for linearizable)
e In many database systems, read committed is the default
» has to be explicitly changed to serializable when required
set isolation level serializable
e Oracle calls snapshot isolation “serializable”

Weak Isolation Levels: Read Uncommitted
T4 T2 T3

x=y=0
start
write(X) = 1
write(Y) = 1 start
read(X) = 1
write(X) = 3
commit
read(X) =3
start
write(X) = 2
commit
read(X) = 2
* Not serializable read(Y) = 1
commit

» Doesn’t guarantee recoverable scheds
* Not free from cascading aborts

Weak Isolation Levels: Read Committed

T+ To

T3

x=y=0
start
write(X) = 1
write(Y) = 1
commit

start
write(X) = 2
commit

Not serializable

Guarantees recoverable scheds

Free from cascading

Stronger isolation than read uncommitted

start
read(X) =0
write(X) = 3
read(X) =3
read(X) = 2
read(Y) = 1
commit

Weak Isolation Levels: Repeatable Reads

T4 To

T3

x=y=0
start
write(X) = 1
commit
start
write(X) = 2
commit

Not serializable

Guarantees recoverable scheds

Free from cascading aborts

Still not serializable, but even stronger isolation

start
read(X) =0
read(X) =0
read(X) =0
commit

Weak |solation Levels: Snapshot Iso

T+ To T3
x=y=0
start
write(X) = 1
read(Y) =10
start
write(Y) = 2
read(X) =0
start
write(Y) = 3
commit read(X) =0
abort
commit
* Not serializable
» Guarantees recoverable scheds
* Free from cascading aborts
* Faster
strict Serializability
T+ To T3
x=0
start
write(X) = 1
write(Y) = 1 start
commit
read(X) = 1
write(X) = 3
read(X) =3
read(X) =3
read(Y) = 1
commit
start
write(X) = 2
commit

» Locking makes it very different

