
Transactions
● Serializability
● Properties

● recoverability, cascading aborts
● Concurrency control via locks

● strict, rigorous, intention
● Deadlocks
● Other approaches to serialization
● Recovery

Snapshot Isolation
● Very popular scheme, used as the primary scheme by

many systems including Oracle, PostgreSQL etc…
● Several others support this in addition to locking-based protocol

● A type of optimistic concurrency control

● Key idea:
● For each object, maintain past “versions” of the data along with

timestamps
● Every update to an object causes a new version to be generated

● Read queries:
● Let “t” be the “timestamp” of the query, i.e., the time at which it entered

the system
● When the query asks for a data item, provide a version of the data item

that was latest as of “t”
● Even if the data changed in between, provide an old version

● No locks needed, no waiting for any other transactions or queries
● The query executes on a consistent snapshot of the database
● Never aborted

● Update queries (transactions):
● Reads processed as above on a snapshot
● Writes are done in private storage. However, the writes are visible to the

transaction that made them.
● At commit time, for each object that was written, check if some other

transaction updated the data item since this transaction started
● If yes, then abort and restart
● If no, make all the writes public simultaneously (by making new versions)

Snapshot Isolation

● Logically, under Snapshot Isolation:
● takes snapshot of committed data at start
● only reads/modifies data in local snapshot
● updates of concurrent transactions not

visible to
● writes of complete when it commits
● First-committer-wins rule:

● Commits only if no other concurrent
transaction has already written data
that intends to write (overlapping
writesets)

● Or: first-writer-wins rule

T1

T1
T1

T1

T1 T2 T3

W(Y := 1)
Commit

Start
R(X) 0
R(Y) 1

W(X:=2)
W(Z:=3)
Commit

R(Z) 0
R(Y) 1
W(X:=3)
Commit-Req
Abort

Concurrent updates not visible
Own updates are visible

Not first-committer of X
Serialization error, T2 is rolled back

Snapshot Isolation
initial values zero

● Advantages:
● Read queries do not block, never abort
● Update transactions don’t abort as long as conflicts are rare.
● Overall better performance than locking-based protocols

● Major disadvantage:
● Not serializable!

commit?

commit?

“first committer”

 T1 T2
w(x)1
 w(y)1
r(y)0
 r(x)0

x = y = 0But:

Snapshot Isolation

● High-level:
● each write to Q creates a new version of Q (old versions

retained)
● reads parameterized by transaction’s timestamp

● satisfied by last write before that timestamp

● Timestamp usage:
● transaction gets StartTS(Ti), CommitTS(Ti),
● write by Ti saved with CommitTS(Ti)
● read by Ti satisfied by last version w/ time < StartTS(Ti)
● as a result:

● transaction only see writes committed prior to start
● i.e. a snapshot

Snapshot Isolation implementation via multi-version database

Two validation approaches: first-committer-wins, and first-updater-wins.

Tj is said to be concurrent with a transaction Ti if timestamps overlap:
StartTS(Tj) ≤ StartTS(Ti) ≤ CommitTS(Tj), or
StartTS(Ti) ≤ StartTS(Tj) ≤ CommitTS(Ti)

Under first-committer-wins (the default), Ti checks at commit time to see if any
concurrent transaction has written an object that it is trying to write. If so, Ti aborts.

Under first-updater-wins, Ti checks at each write. Before writing Q, Ti :
• Attempts to acquire a write lock on Q. If the lock is acquired, Ti aborts if a

concurrent transaction Tj has already written Q.
• If the lock was not successful, Ti waits to see if Tj commits or aborts. If Tj

commits, Ti aborts. If Tj aborts:
• Ti repeats the check for a concurrent writer having updated Q. If found,

• Ti aborts.
• else

• Ti commits

Snapshot Isolation implementation is via multi-version database

● Advantages:
● Read queries don’t block at all, run fast
● If conflicts rare, update transactions don’t abort either
● Overall better performance than locking protocols

● Major disadvantage:
● Not serializable
● Inconsistencies may be introduced
● See the wikipedia article for more details and an example

● http://en.wikipedia.org/wiki/Snapshot_isolation

Snapshot Isolation

Transactions
● Serializability
● Properties

● recoverability, cascading aborts
● Concurrency control via locks

● strict, rigorous, intention
● Deadlocks
● Other approaches to serialization
● Recovery

Timestamp-Ordering Protocol
● No locks
● Transactions issued timestamps when started
● Timestamps determine the serializability order
● If T1 enters before T2, then T1 < T2 in serializability order
● Say timestamp(T1) < timestamp(T2)

● If T1 wants to read data item A
● If any transaction with larger timestamp wrote that data item, then this

operation is not permitted, and T1 is aborted
● If T1 wants to write data item A

● If a transaction with larger timestamp already read, or wrote, that data
item, then the write is rejected and T1 is aborted

● Aborted transactions are restarted with a new timestamp
● Possibility of starvation
● Optimistic

● Example

T1 T2 T3 T4 T5

read(Y)
write(X)

read(Y)
write(Y)
write(Z)

read(Z)
read(X)
abort

read(X)
write(Z)

abort
write(Y)
write(Z)

TS(T1) < TS(T2) < TS(T3) < TS(T4) < TS(T5)

abort

Timestamp-Ordering Protocol

● The following set of instructions is not conflict-serializable:

● As discussed before, not even view-serializable:
● if Ti reads initial value of Q in S, must also in S’
● if Ti reads value written from Tj in S, must also in S’
● if Ti performs final write to Q in S, must also in S’

not both
possible
at once

Timestamp-Ordering Protocol

● Thomas’ Write Rule
● Ignore obsolete writes

● Say timestamp(T1) < timestamp(T2)
● If T1 wants to read data item A

● If any transaction with larger timestamp wrote that data item, then
this operation is not permitted, and T1 is aborted

● If T1 wants to write data item A
● If a transaction with larger timestamp already read, or wrote, that

data item, then the write is rejected and T1 is aborted
● If a transaction with larger timestamp already written that data

item, then the write is ignored

Ignored if
T3 < T4

Timestamp-Ordering

● As discussed here, has a few issues
● Starvation
● Non-recoverable
● Cascading rollbacks possible

● Most can be solved fairly easily
● Read up

● We can always add more restrictions to ensure these things
● The goal is to find the minimal set of restrictions to as to not hinder

concurrency

Timestamp-Ordering Protocol

● Each transaction Ti has 3 timestamps
● Start(Ti) : when Ti starts execution
● Validation(Ti): when Ti enters its validation phase
● Finish(Ti) : when Ti finishes its write phase

● Serializability order = validation order
● TS(Ti) = Validation(Ti)
● increases concurrency.

● Higher degree of concurrency if conflicts low.
● because the serializability order is not pre-decided, and
● relatively few transactions will have to be rolled back.

Validation Protocol

If for all Tk with TS(Tk) < TS(Ti) then validation of Ti succeeds if:
● finish(Tk) < start(Ti)

or:
● the set of data items written by Tk does not intersect with the set of data

items read by Ti and
● Tk completes its write phase before Ti starts validation:

start(Ti) < finish(Tk) < validation(Ti)

Validation Protocol

● Serialization order?
● T25 < T26

● T25 validates?
● because first

● T26 validates?
● T25 did not write

Validation Protocol

● finish(Tk) < start(Ti)
or:

● data items written by Tk do not intersect with data items read by Ti and
● start(Ti) < finish(Tk) < validation(Ti)

T1 T3

<start>
write(X) = 1

<validate>
<commit>

<start>
read(X) = ?
<validate>
<commit>

T2
x = 0

<start>
read(X) = ?

<validate>
<abort>

0

1<abort>
<abort>

Validation Protocol

● finish(Tk) < start(Ti)
or:

● data items written by Tk do not intersect with data items read by Ti and
● start(Ti) < finish(Tk) < validation(Ti)

Weak Levels of Isolation in SQL
● SQL can be parameterized by isolation level:

● Read uncommitted: allows uncommitted writes to be read
● Read committed: only read committed data, repeated reads of same

data might return different values as other transactions commit
● Repeatable read: allows only committed records to be read, and

repeating a read should return the same value
● so read locks should be retained or caching used
● transaction-local writes can change subsequent reads
● Phantom problem not necessarily prevented

▪ T1 may see some records inserted by T2, but may not see others
inserted by T2

● Serializable: default, strongest (except for linearizable)
● In many database systems, read committed is the default

● has to be explicitly changed to serializable when required
● set isolation level serializable

● Oracle calls snapshot isolation “serializable”

T1 T3

start
read(X) = 1
write(X) = 3

read(X) = 3

read(X) = 2
read(Y) = 1
commit

T2

start
write(X) = 2
commit

Weak Isolation Levels: Read Uncommitted

start
write(X) = 1
write(Y) = 1

commit

• Not serializable

• Doesn’t guarantee recoverable scheds

• Not free from cascading aborts

x = y = 0

Weak Isolation Levels: Read Committed
T1 T3

start
read(X) = 0
write(X) = 3

read(X) = 3

read(X) = 2
read(Y) = 1
commit

T2

start
write(X) = 2
commit

start
write(X) = 1
write(Y) = 1

commit

• Not serializable

• Guarantees recoverable scheds

• Free from cascading

• Stronger isolation than read uncommitted

x = y = 0

T1 T3

start
write(X) = 1

commit

start
read(X) = 0

read(X) = 0

read(X) = 0
commit

T2

start
write(X) = 2
commit

Weak Isolation Levels: Repeatable Reads

• Not serializable

• Guarantees recoverable scheds

• Free from cascading aborts

• Still not serializable, but even stronger isolation

x = y = 0

Weak Isolation Levels: Snapshot Iso
T1 T3

start
write(Y) = 3
read(X) = 0

abort

T2
x = y = 0

start
write(X) = 1
read(Y) = 0

commit
• Not serializable

• Guarantees recoverable scheds

• Free from cascading aborts

• Faster

start
write(Y) = 2
read(X) = 0

commit

strict Serializability
T1 T3

start
wait
wait
wait
read(X) = 1
write(X) = 3
read(X) = 3
read(X) = 3
read(Y) = 1
commit

T2
x = 0

start
write(X) = 2
commit

start
write(X) = 1
write(Y) = 1

commit

• Locking makes it very different

