
Recovery

Context
● ACID properties: 

● We have talked about Isolation and Consistency 
● How do we guarantee Atomicity and Durability ? 

● Atomicity: Two problems 
▪ Part of the transaction is done, but we want to cancel it 

▪ ABORT/ROLLBACK 
▪ System crashes during the transaction. Some changes made it to the disk, some 

didn’t. 
● Durability: 

▪ Transaction finished. User notified. But changes not sent to disk yet (for 
performance reasons). System crashed. 

● Essentially similar solutions



Reasons for crashes
● Transaction failures 

● Logical errors: transaction cannot complete due to some internal error condition
● System errors: the database system must terminate an active transaction due to 

an error condition (e.g., deadlock)
● System crash 

● Power failures, operating system bugs etc 
● Fail-stop assumption: non-volatile storage contents are assumed to not be 

corrupted by system crash
● Database systems have numerous integrity checks to prevent corruption of disk data 

● Disk failure 
● Head crashes; for now we will assume  

● STABLE STORAGE: Data never lost. Can approximate by using RAID and maintaining 
geographically distant copies of the data

Approach, Assumptions etc..
● Approach: 

● Guarantee A and D: 
● by controlling how the disk and memory interact,  
● by storing enough information during normal processing to recover from 

failures 
● by developing algorithms to recover the database state 

● Assumptions: 
● System may crash, but the disk is durable 
● The only atomicity guarantee is that a disk block write is atomic 

● Naive solutions work, but are too expensive. 
● E.g. The shadow copy solution we saw earlier 

● Make a copy of the database; do the changes on the copy; do an atomic 
switch of the dbpointer at commit time 

● Goal is to do this as efficiently as possible



Data Access
● Physical blocks are those residing on the disk.  
● Buffer blocks are those temporarily in main memory. 
● Block movements between  disk and main memory 

are initiated through the following two operations: 
● input(B) transfers the physical block B  to main memory. 
● output(B) transfers the buffer block B to the disk, and replaces the 

appropriate physical block there. 
● We assume, for simplicity, that each data item fits in, 

and is stored inside, a single block.
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Data Access (Cont.)
● Each transaction Ti has its private work-area in which 

local copies of all data items accessed and updated 
by it are kept. 
●  Ti's local copy of a data item X is called xi. 

● Transferring data items between system buffer blocks and its 
private work-area done by: 
● read(X) assigns the value of data item X to the local variable xi. 
● write(X) assigns the value of local variable xi to data item {X} in the 

buffer block. 
● Note: output(BX) need not immediately follow write(X). System can 

perform the output operation when it deems fit. 
● Transactions  

● Must perform read(X) before accessing X for the first time 
(subsequent reads can be from local copy)  

● write(X) can be executed at any time before the transaction commits*

STEAL vs NO STEAL, FORCE vs NO FORCE
● STEAL: 

● The buffer manager can steal a (memory) page from the database 
● ie., it can write an arbitrary page to the disk and use that page for something 

else from the disk 
● In other words, the database system doesn’t control the buffer replacement 

policy 
● Why a problem ? 

● The page might contain dirty writes, ie., writes/updates by a transaction that 
hasn’t committed 

● But, we must allow steal for performance reasons. 

● NO STEAL: 
● Not allowed. More control, but less flexibility for the buffer manager.



STEAL vs NO STEAL, FORCE vs NO FORCE
● FORCE: 

● The database system forces all the updates of a transaction to 
disk before committing 

● Why ? 
● To make its updates permanent before committing 

● Why a problem ? 
● Most probably random I/Os, so poor response time and throughput 
● Interferes with the disk controlling policies 

● NO FORCE: 
● Don’t do the above. Desired. 
● Problem:  

● Guaranteeing durability becomes hard 
● Might still have to force pages to disk, but hopefully minimal.
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STEAL vs NO STEAL, FORCE vs NO FORCE



● Only updates from committed transaction are written to disk 
(since no steal) 

● Updates from a transaction are forced to disk before commit 
(since force) 
● A minor problem: how do you guarantee that all updates from a 

transaction make it to the disk atomically ? 
● Remember we are only guaranteed an atomic block write 
● What if some updates make it to disk, and other don’t ? 

● Can use something like shadow copying/shadow paging 

● No durability problems. 
● Slow

What if NO STEAL, FORCE ?
start trans 
write(A) 
write(B) 
start commit 
push A 
pu… 
……crash!

● After crash: 
● Disk might have DB data from uncommitted transactions 
● Disk might not have DB data from committed transactions 

● How to recover? 

 “Log-based recovery”

What if STEAL, NO FORCE ?



Log-based Recovery
● Most commonly used recovery method 
● A log is a record of everything the database system does 

● the “DB” are the files where relations are stored 

● For every operation done by the database, a log record is 
generated and stored typically on a different disk 
● <T1, START>  
● <T2, COMMIT> 
● <T3, ABORT> 
● <T1, A, 100, 200> 

● T1 modified A; old value = 100, new value = 200

Log
● Example transactions  T0 and T1       (T0 serialized before T1): 
 T0:     read (A)    T1 :  read (C) 
  A = A - 50          C = C - 100 
  write (A)                         write (C) 
  read (B) 
  B =  B + 50 
  write (B) 

● Possible logs after crash and restart:
<T0 start>  <T0 start>  <T0 start> 
<T0 , A, 950, 900> <T0, A, 950, 900> <T0 , A, 950, 900> 
<T0 , B, 2000, 2050> <T0, B, 2000, 2050> <T0 , B, 2000, 2050> 

  <T0, commit> <T0 , commit> 
  <T1, start>  <T1 , start> 
  <T1, C, 500, 400> <T1, C, 500, 400> 
    <T1, commit> 
          (a)              (b)                    (c)



Log-based Recovery
● Starting assumptions:  

1. Log records are immediately pushed to the disk as soon as they are 
generated 

2. Log records are written to disk in the order generated 
3. A log record is generated before the actual data value is updated 
4. Strict two-phase locking 

● The first assumption can be relaxed 
● A transaction T1 is considered committed only after record <T1, COMMIT> 

has been pushed to the disk 
● Also: 

● Log writes are sequential 
● They are also often on a different disk (why important?) 
● File systems:  

● LFS == log-structured file system 
● journaling file systems

Recovery
STEAL is allowed, so changes of a transaction may have made it to the disk 

● UNDO(T1): 
● Procedure executed to rollback/undo the effects of a transaction 
● E.g.  

● <T1, START> 
● <T1, A, 200, 300> 
● <T1, B, 400, 300> 
● <T1, A, 300, 200>           [[ note: second update of A ]] 
● T1 decides to abort 

● Any of the changes might have made it to the disk



Using the log to abort/rollback
● UNDO(T1): 

● Go backwards in the log looking for log records belonging to T1 
● Restore the values to the old values 
● NOTE: Going backwards is important. 

● A was updated twice 
● In the example, we simply: 

● Restore A to 300 
▪ Write <T1, CLR, A, 300> record                                       (compensating log record) 

● Restore B to 400 
▪ Write <T1, CLR, B, 400> record 

● Restore A to 200 
▪ Write <T1, CLR, A, 200> record 

▪ Write <T1, ABORT>                                   (abort comes after CLR records) 
● Note: No other transaction could have changed A or B in the 

meantime 
● Strict two-phase locking 

Using the log to recover
● We don’t require FORCE, so a change made by the committed 

transaction may not have made it to the disk before the system crashed 
● BUT, the log record did (recall our assumptions) 

● REDO(T1): 
● Procedure executed to recover a committed transaction 
● E.g. 

● <T1, START> 
● <T1, A, 200, 300> 
● <T1, B, 400, 300> 
● <T1, A, 300, 200>           [[ note: second update of A ]] 
● <T1, COMMIT> 

● By our assumptions, all the log records made it to the disk (since the 
transaction committed) 

● But any or none of the changes to A or B might have made it to disk



Using the log to recover
● REDO(T1): 

● Go forward in the log looking for log records belonging to T1 
● Set the values to the new values 
● NOTE: Going forward is important. 
● In the example, we simply: 

● Set A to 300 
● Set B to 300 
● Set A to 200

Idempotency
● Both redo and undo are required to be idempotent 

● F is idempotent, if F(x) = F(F(x)) = F(F(F(F(…F(x))))) 
● Multiple applications shouldn’t change the effect 

● Important as we don’t know what made it to the disk 
● E.g., consider a log record of the type  

● <T1, A, incremented by 100> 
● Old value was 200, and so new value was 300 

● But the on disk value might be 200 or 300 (since we have no 
control over the buffer manager) 

● So we have no idea whether to apply this log record or not 
● Hence, we use value based logging (physical logging), not 

operation based (logical logging)



Log-based recovery
● Log is maintained 

● If during the normal processing, a transaction needs to abort 
● UNDO() is used for that purpose 

● If the system crashes, then we need to do recovery using both 
UNDO() and REDO() 
● Some transactions that were going on at the time of crash may not have 

completed, and must be aborted/undone 
● Some transactions may have committed, but their changes didn’t make it to 

disk, so they must be redone 
● Called restart recovery

Restart Recovery (after a crash)
1. Initialize the undo-list to empty list. 

2. Roll forward through the log re-executing everything 

a. Add transaction STARTs to the undo-list as you go 

b. Remove transactions from the undo-list if a corresponding 
commit record is found 

3. Roll back from end of log undo-ing the effects of transactions in your 
undo-list



Checkpointing
● How far should we go back in the log while recovering ?? 

● It is possible that a transaction made an update at the very beginning of 
the system, and that update never made it to disk 
● very very unlikely, but possible (because we don’t do force) 

● For correctness, we have to go back all the way to the beginning of the 
log 

● Bad idea !! 

● Checkpointing is a mechanism to reduce this

Checkpointing
● Periodically, the database system writes out everything in the 

memory to disk 
● Goal is to get the database in a state that we know (not necessarily 

consistent state) 
● Steps: 

● Stop all other activity in the database system 
● Write out the entire contents of the memory to the disk  

● Only need to write updated pages, so not so bad 
● Entirely write all updates, whether committed or not 

● Write out all the log records to the disk 
● Write out a special log record to disk  

● <CHECKPOINT LIST_OF_ACTIVE_TRANSACTIONS> 
● The second component is the list of all active transactions in the system right 

now 
● Continue with the transactions again



Restart Recovery w/ checkpoints
● implement the redo phase of Section 19.4  

● Roll forward from the last checkpoint or the beginning of the log: keep track of 
active transactions, taking into account any information from the checkpoint 

● redo any UPDATE and CLR records encountered 
● implement the undo phase of Section 19.4 

● roll back from the end of the log: reversing the effects of any encountered 
UPDATE records of active transactions by  
● changing the data in the relation back to the original, and  
● append ing CLR records 

● add abort records when encountering the START record for any active transaction 
● finish 

● push all changes to the relation file (using BufferPool.writeAllToDisk)  
● write a checkpoint record to the log at the end.

(assignment 8 or 9)

Write-ahead logging
● So far assumed that log records are written to disk as soon as 

generated 
● Too restrictive 

● Write-ahead logging: 
● Before an update on a data item (say A) makes it to disk, the log 

records referring to the update must be forced to disk 
● How ? 

● Each log record has a log sequence number (LSN) 
▪ Monotonically increasing 

● For each page in the memory, we maintain the LSN of the last log record that 
updated a record on this page 
▪ pageLSN 

● If a page P is to be written to disk, all the log records till pageLSN(P) are 
forced to disk first



Write-ahead logging
● Write-ahead logging (WAL) is sufficient 

for all our purposes 
● All the algorithms discussed before work 

● Note the special case:  
● A transaction is not considered committed 

unless the <T, commit> record is on disk

Other issues
● ARIES: Considered the canonical description of log-based 

recovery 
● Used in most systems 
● Has many other types of log records that simplify recovery significantly 

● Loss of disk: 
● Can use a scheme similar to checkpointing to periodically dump the 

database onto tapes or optical storage 
● Techniques exist for doing this while the transactions are executing (called 

fuzzy dumps) 

● Shadow paging: 
● Read up



Other issues
● The system halts during checkpointing 

● Not acceptable 
● Advanced recovery techniques allow the system to continue processing 

while checkpointing is going on 

● System may crash during recovery 
● Our simple protocol is actually fine 
● In general, this can be painful to handle 

● B+-Tree and other indexing techniques 
● Strict 2PL is typically not followed (we didn’t cover this) 
● So physical logging is not sufficient; must have logical logging (section 19.7

Recap
● STEAL vs NO STEAL, FORCE vs NO FORCE 

● We studied how to do STEAL and NO FORCE through log-based 
recovery scheme
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No Steal Steal

Desired
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