
Recovery

Context
● ACID properties:

● We have talked about Isolation and Consistency
● How do we guarantee Atomicity and Durability ?

● Atomicity: Two problems
▪ Part of the transaction is done, but we want to cancel it

▪ ABORT/ROLLBACK
▪ System crashes during the transaction. Some changes made it to the disk, some

didn’t.
● Durability:

▪ Transaction finished. User notified. But changes not sent to disk yet (for
performance reasons). System crashed.

● Essentially similar solutions

Reasons for crashes
● Transaction failures

● Logical errors: transaction cannot complete due to some internal error condition
● System errors: the database system must terminate an active transaction due to

an error condition (e.g., deadlock)
● System crash

● Power failures, operating system bugs etc
● Fail-stop assumption: non-volatile storage contents are assumed to not be

corrupted by system crash
● Database systems have numerous integrity checks to prevent corruption of disk data

● Disk failure
● Head crashes; for now we will assume

● STABLE STORAGE: Data never lost. Can approximate by using RAID and maintaining
geographically distant copies of the data

Approach, Assumptions etc..
● Approach:

● Guarantee A and D:
● by controlling how the disk and memory interact,
● by storing enough information during normal processing to recover from

failures
● by developing algorithms to recover the database state

● Assumptions:
● System may crash, but the disk is durable
● The only atomicity guarantee is that a disk block write is atomic

● Naive solutions work, but are too expensive.
● E.g. The shadow copy solution we saw earlier

● Make a copy of the database; do the changes on the copy; do an atomic
switch of the dbpointer at commit time

● Goal is to do this as efficiently as possible

Data Access
● Physical blocks are those residing on the disk.
● Buffer blocks are those temporarily in main memory.
● Block movements between disk and main memory

are initiated through the following two operations:
● input(B) transfers the physical block B to main memory.
● output(B) transfers the buffer block B to the disk, and replaces the

appropriate physical block there.
● We assume, for simplicity, that each data item fits in,

and is stored inside, a single block.

Example of Data Access

X

Y
A
B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)
read(X)

write(Y)

disk

work area
of T1

work area
of T2

memory

x2

Data Access (Cont.)
● Each transaction Ti has its private work-area in which

local copies of all data items accessed and updated
by it are kept.
● Ti's local copy of a data item X is called xi.

● Transferring data items between system buffer blocks and its
private work-area done by:
● read(X) assigns the value of data item X to the local variable xi.
● write(X) assigns the value of local variable xi to data item {X} in the

buffer block.
● Note: output(BX) need not immediately follow write(X). System can

perform the output operation when it deems fit.
● Transactions

● Must perform read(X) before accessing X for the first time
(subsequent reads can be from local copy)

● write(X) can be executed at any time before the transaction commits*

STEAL vs NO STEAL, FORCE vs NO FORCE
● STEAL:

● The buffer manager can steal a (memory) page from the database
● ie., it can write an arbitrary page to the disk and use that page for something

else from the disk
● In other words, the database system doesn’t control the buffer replacement

policy
● Why a problem ?

● The page might contain dirty writes, ie., writes/updates by a transaction that
hasn’t committed

● But, we must allow steal for performance reasons.

● NO STEAL:
● Not allowed. More control, but less flexibility for the buffer manager.

STEAL vs NO STEAL, FORCE vs NO FORCE
● FORCE:

● The database system forces all the updates of a transaction to
disk before committing

● Why ?
● To make its updates permanent before committing

● Why a problem ?
● Most probably random I/Os, so poor response time and throughput
● Interferes with the disk controlling policies

● NO FORCE:
● Don’t do the above. Desired.
● Problem:

● Guaranteeing durability becomes hard
● Might still have to force pages to disk, but hopefully minimal.

Force

No Force

No Steal Steal

Desired

Trivial

STEAL vs NO STEAL, FORCE vs NO FORCE

● Only updates from committed transaction are written to disk
(since no steal)

● Updates from a transaction are forced to disk before commit
(since force)
● A minor problem: how do you guarantee that all updates from a

transaction make it to the disk atomically ?
● Remember we are only guaranteed an atomic block write
● What if some updates make it to disk, and other don’t ?

● Can use something like shadow copying/shadow paging

● No durability problems.
● Slow

What if NO STEAL, FORCE ?
start trans
write(A)
write(B)
start commit
push A
pu…
……crash!

● After crash:
● Disk might have DB data from uncommitted transactions
● Disk might not have DB data from committed transactions

● How to recover?

 “Log-based recovery”

What if STEAL, NO FORCE ?

Log-based Recovery
● Most commonly used recovery method
● A log is a record of everything the database system does

● the “DB” are the files where relations are stored

● For every operation done by the database, a log record is
generated and stored typically on a different disk
● <T1, START>
● <T2, COMMIT>
● <T3, ABORT>
● <T1, A, 100, 200>

● T1 modified A; old value = 100, new value = 200

Log
● Example transactions T0 and T1 (T0 serialized before T1):
 T0: read (A) T1 : read (C)
 A = A - 50 C = C - 100
 write (A) write (C)
 read (B)
 B = B + 50
 write (B)

● Possible logs after crash and restart:
<T0 start> <T0 start> <T0 start>
<T0 , A, 950, 900> <T0, A, 950, 900> <T0 , A, 950, 900>
<T0 , B, 2000, 2050> <T0, B, 2000, 2050> <T0 , B, 2000, 2050>

 <T0, commit> <T0 , commit>
 <T1, start> <T1 , start>
 <T1, C, 500, 400> <T1, C, 500, 400>
 <T1, commit>
 (a) (b) (c)

Log-based Recovery
● Starting assumptions:

1. Log records are immediately pushed to the disk as soon as they are
generated

2. Log records are written to disk in the order generated
3. A log record is generated before the actual data value is updated
4. Strict two-phase locking

● The first assumption can be relaxed
● A transaction T1 is considered committed only after record <T1, COMMIT>

has been pushed to the disk
● Also:

● Log writes are sequential
● They are also often on a different disk (why important?)
● File systems:

● LFS == log-structured file system
● journaling file systems

Recovery
STEAL is allowed, so changes of a transaction may have made it to the disk

● UNDO(T1):
● Procedure executed to rollback/undo the effects of a transaction
● E.g.

● <T1, START>
● <T1, A, 200, 300>
● <T1, B, 400, 300>
● <T1, A, 300, 200> [[note: second update of A]]
● T1 decides to abort

● Any of the changes might have made it to the disk

Using the log to abort/rollback
● UNDO(T1):

● Go backwards in the log looking for log records belonging to T1
● Restore the values to the old values
● NOTE: Going backwards is important.

● A was updated twice
● In the example, we simply:

● Restore A to 300
▪ Write <T1, CLR, A, 300> record (compensating log record)

● Restore B to 400
▪ Write <T1, CLR, B, 400> record

● Restore A to 200
▪ Write <T1, CLR, A, 200> record

▪ Write <T1, ABORT> (abort comes after CLR records)
● Note: No other transaction could have changed A or B in the

meantime
● Strict two-phase locking

Using the log to recover
● We don’t require FORCE, so a change made by the committed

transaction may not have made it to the disk before the system crashed
● BUT, the log record did (recall our assumptions)

● REDO(T1):
● Procedure executed to recover a committed transaction
● E.g.

● <T1, START>
● <T1, A, 200, 300>
● <T1, B, 400, 300>
● <T1, A, 300, 200> [[note: second update of A]]
● <T1, COMMIT>

● By our assumptions, all the log records made it to the disk (since the
transaction committed)

● But any or none of the changes to A or B might have made it to disk

Using the log to recover
● REDO(T1):

● Go forward in the log looking for log records belonging to T1
● Set the values to the new values
● NOTE: Going forward is important.
● In the example, we simply:

● Set A to 300
● Set B to 300
● Set A to 200

Idempotency
● Both redo and undo are required to be idempotent

● F is idempotent, if F(x) = F(F(x)) = F(F(F(F(…F(x)))))
● Multiple applications shouldn’t change the effect

● Important as we don’t know what made it to the disk
● E.g., consider a log record of the type

● <T1, A, incremented by 100>
● Old value was 200, and so new value was 300

● But the on disk value might be 200 or 300 (since we have no
control over the buffer manager)

● So we have no idea whether to apply this log record or not
● Hence, we use value based logging (physical logging), not

operation based (logical logging)

Log-based recovery
● Log is maintained

● If during the normal processing, a transaction needs to abort
● UNDO() is used for that purpose

● If the system crashes, then we need to do recovery using both
UNDO() and REDO()
● Some transactions that were going on at the time of crash may not have

completed, and must be aborted/undone
● Some transactions may have committed, but their changes didn’t make it to

disk, so they must be redone
● Called restart recovery

Restart Recovery (after a crash)
1. Initialize the undo-list to empty list.

2. Roll forward through the log re-executing everything

a. Add transaction STARTs to the undo-list as you go

b. Remove transactions from the undo-list if a corresponding
commit record is found

3. Roll back from end of log undo-ing the effects of transactions in your
undo-list

Checkpointing
● How far should we go back in the log while recovering ??

● It is possible that a transaction made an update at the very beginning of
the system, and that update never made it to disk
● very very unlikely, but possible (because we don’t do force)

● For correctness, we have to go back all the way to the beginning of the
log

● Bad idea !!

● Checkpointing is a mechanism to reduce this

Checkpointing
● Periodically, the database system writes out everything in the

memory to disk
● Goal is to get the database in a state that we know (not necessarily

consistent state)
● Steps:

● Stop all other activity in the database system
● Write out the entire contents of the memory to the disk

● Only need to write updated pages, so not so bad
● Entirely write all updates, whether committed or not

● Write out all the log records to the disk
● Write out a special log record to disk

● <CHECKPOINT LIST_OF_ACTIVE_TRANSACTIONS>
● The second component is the list of all active transactions in the system right

now
● Continue with the transactions again

Restart Recovery w/ checkpoints
● implement the redo phase of Section 19.4

● Roll forward from the last checkpoint or the beginning of the log: keep track of
active transactions, taking into account any information from the checkpoint

● redo any UPDATE and CLR records encountered
● implement the undo phase of Section 19.4

● roll back from the end of the log: reversing the effects of any encountered
UPDATE records of active transactions by
● changing the data in the relation back to the original, and
● append ing CLR records

● add abort records when encountering the START record for any active transaction
● finish

● push all changes to the relation file (using BufferPool.writeAllToDisk)
● write a checkpoint record to the log at the end.

(assignment 8 or 9)

Write-ahead logging
● So far assumed that log records are written to disk as soon as

generated
● Too restrictive

● Write-ahead logging:
● Before an update on a data item (say A) makes it to disk, the log

records referring to the update must be forced to disk
● How ?

● Each log record has a log sequence number (LSN)
▪ Monotonically increasing

● For each page in the memory, we maintain the LSN of the last log record that
updated a record on this page
▪ pageLSN

● If a page P is to be written to disk, all the log records till pageLSN(P) are
forced to disk first

Write-ahead logging
● Write-ahead logging (WAL) is sufficient

for all our purposes
● All the algorithms discussed before work

● Note the special case:
● A transaction is not considered committed

unless the <T, commit> record is on disk

Other issues
● ARIES: Considered the canonical description of log-based

recovery
● Used in most systems
● Has many other types of log records that simplify recovery significantly

● Loss of disk:
● Can use a scheme similar to checkpointing to periodically dump the

database onto tapes or optical storage
● Techniques exist for doing this while the transactions are executing (called

fuzzy dumps)

● Shadow paging:
● Read up

Other issues
● The system halts during checkpointing

● Not acceptable
● Advanced recovery techniques allow the system to continue processing

while checkpointing is going on

● System may crash during recovery
● Our simple protocol is actually fine
● In general, this can be painful to handle

● B+-Tree and other indexing techniques
● Strict 2PL is typically not followed (we didn’t cover this)
● So physical logging is not sufficient; must have logical logging (section 19.7

Recap
● STEAL vs NO STEAL, FORCE vs NO FORCE

● We studied how to do STEAL and NO FORCE through log-based
recovery scheme

Force

No Force

No Steal Steal

Desired

Trivial Force

No Force

No Steal Steal

requires
REDO
UNDO

requires
UNDO

requires
REDO

