We have a FINAL coming up.....

Q1
4 Points
Q 1 O - 1 T 2
read (A)
A-=100
write(A)
Explanation
Not conflict serializable because accesses read(B)
to A require edge from T1 to T2, while
accesses to B require edge from T2 to T1. B+=10
Hence, cycle in precedence graph, not conflict
serialiable. write(®)
read(B)
Not view serializable because T1 has initial
read of A, T2 has initial read of B, no view B +=100
serial schedule could have both of those.
write(B)
However, the answer IS guaranteed to be
the same as either T1,T2 or read®
T2,T1 because the reads and writes do not 1o
clobber each other, and the updates are just
constants, meaning their order does not matter. write(d)
Hence, serializable.
Choose the most specific answer below:
@ serializable
QO conflict serializable
O view serializable
O not serializable

Q10-2

Explanation

Precedence graph would only have edge from T1
to T2.

No cycle, so conflict serializable. This is most

specific as CS is subset of VS which is subset of S.

T1 2
read (A)
A-=100
write(A)
read(A)
A+=10
write(A)
read(B)
B +=100
write(B)
read(B)
B+=10
write(B)
Choose the most specific answer below:
O serializable
@ conflict serializable
O view serializable

Q10 -3

Explanation

Not CS (cycle in graph). Not VS because T2 has
both last writes AND initial read of B (no serial
sched would have both).

Could show not serializable by plugging in
numbers and showing that equiv to neither
T1,T2 or T2,T1.

Easier to note that T1's increment of B by 100 is
overwritten by T2 (which reads B first and writes
last, so T1's add to B is ignored. No serial
schedule would do this.

Edge in precedence graph if:
1. T, executes write(Q) before 7; executes read(Q).

2. T, executes read(Q) before T; executes write(Q).

3. T, executes write(Q) before 7, executes write(Q).

T 2

read (A)

A-=100

write(A)
read(B)
tmp =0.1*B
B-=tmp

read(B)

B +=100

write(B)
write(B)
read(A)
A+=tmp
write(A)

Choose the most specific answer below:
O serializable

O conflict serializable

O view serializable

@ not serializable

Assume that each write outputs a unique value

.) 72 T 3 T4
Q 1 O - 4 computed using all prior reads by the same
transactions. read(a)
read(A)
Choose the most specific answer below:
read (A)
O serializable
O conflict serializable write(A)
O view serializable
® not serializable read(®)
read(C)
Explanation write(A)
A better way to put this might be that the
"uniqueness" requirement implies that all reads- read(B)
from relationships must be the same as in any
equivalent serial schedule. Otherwise, written read(B)
values would change and consistency would
presumably be violated.)
. . . write(B)
T2's read of B is before T3's write, so T2 < T3 in
the equivalent serial schedule. However, T2's
write of A is after T3's read of A, meaning T3 < T2 write(B)
in the equivalent serial schedule. Both of these
cannot be true at the same time, so there can be read(C)
no equivalent serial schedule.
write(C)
T 12 3 4 15
Q 1 O - 5 read (A)
read(A)
The following schedule is conflict-serializable. List out
at least four equivalent serial schedules for this write(A)
schedule. You can do this by drawing the precedence
graph, and then finding sequences of transactions read(A)
where all the edges go from left to right. As an
example: T1, T2, T3, T4, T5 is clearly not an equivalent @
serial schedule because there is an edge from T3 to e
T1 (due to A).
write(B)
read(B)
Explanation
Edges: @ @ write(A)
21 \ /
3—>2 read(C)
@&
5—>4 / read(B)
®
3,2,1 must be in that order \ rite()
wri
5,2,4 must be in that order @
53214 read(C)
53241
35214 read(C)
35241
might be others? write(C)

write(B)

Q11-24

Q2.4
1 Point

Instead of the previous, T3 wants to execute the following SQL
query:

update R2 set R2.A = 100 where R2.B = 10;

Assume that only a few tuples in R2 satisfy the condition. Which of
the following is the minimal set of lock requests T3 should make?

@) IS(DB), S(R2), X locks on tuples that satisfy condition

O IX(DB), X(R2)

O IX(DB), IX(R2), X locks on tuples that satisfy condition

(® IX(DB), SIX(R2), X locks on tuples that satisfy condition

O 1S(DB), IX(DB), SIX(R2), X locks on tuples that satisfy condition

Explanation

Only needs IX on DB, as it won't be reading R1.
Needs shared lock on all of R2 to find specific
tuple, then exclusive on the match.

Q11-3

Q3

2 Points

Assume a database system is using the timestamp-ordering
protocol (as discussed in the slides, no Thomas's Write Rule).
Consider 5 transactions with timestamp order: T1, T2, T3, T4, TS
(i.e., T1 was the first transaction, etc).

In the following interleaved schedule, which transactions would be
forced to abort? Multiple instructions from the same transaction are
grouped together if there is no interleaving, for compactness.

Answer for each transaction independently of what happens to
other transactions -- i.e., when considering whether T1 will be
aborted, assume all the other transactions are valid.

‘J‘ T1 We are using an alternate notation here for simplicity -- the
schedule should still be read top to bottom.
‘7‘ T2 Transaction ID Instructions
T read(A), read(C)
(] T3)
T2 read(B), write(C)
lv] T4 m write(C)
I T3 read(A), read(B)
L) T5
m write(C)
T4 read(A), read(B), write(A)
Explanation
T1 aborts on w(C) because T2 already wrote C T5 read(A), write(A)
T2 aborts on w(A) because T3 already read it
. T3 read(D)
T4 aborts on w(A) because T5 already read it
T3 is as pure as the driven snow T2 read(®), write(A)

T4 write(A)

Q11 -4

Q4

1 Point

When a transaction is rolled back under timestamp ordering, it is
assigned a new timestamp. Clearly explain why can it not simply

keep its old timestamp

Explanation

o If t; aborted because it read a value for x that it should not have,
it's because = was written by a younger transaction ¢;. This likely

will not change if restarting w/ the same timestamp, as all
subsequent transactions are younger than ¢;.

If ¢; aborted writing = because because a younger transaction ¢;

had read z, this also will likely never change for the same reason.

The "likely" caveat is because it's possible, though not likely, that

all younger transactions that would have caused ¢; to abort also
aborted, leaving the field clear.

Q11-5

Q5.1
2 Points

Which of the transactions will successfully pass the validation?
Answer for each transaction in isolation -- i.e., assume all other
transactions are successful when deciding whether any specific
transaction will validate or not.

R

T2

&

T3

&)

T4

Explanation

Orderis T1, T4, T2, T3 (= validate order)

T1 validates because no prior trans.

T4 validates because only prior trans is T1,

which finished before T4 started.

T2 fails because prior trans T1 didn't finish first,
and wrote B, which T2 reads.

T3 validates because only reads A,C, never written
by preceding trans. Q5.2

2 Points

What is the serialization order?
ON<Thy<T3<Ty
OL<Ti<T3<Ty
ON<Ti<Ty<T
OT <Ty<Tr<Ty

Q5

4 Points

Consider the following schedule under the Validation Protocol
where we highlight when transactions enter the different phases.

T1 2 T3 T4

start, read (A)

read(B), write(B)

start, read(B)

write(B)

validate, finish

start, read(A)

start, read(A), read(C)

validate, finish

write(B), write(C)

validate, finish

validate, finish

Q11-6

Q6

1 Point

Which transactions will correctly validate under the Validation
Protocol in this schedule?

T 2 3 T4 *T5
H B start, read (A)
Looking at Tj, if for all Tx with TS(Tx) < TS(T;) then validation succeeds if:
. fInISh(T/) < start(TK) start, read(A)
or: start, read(A)
- the set of data items written by T, does not intersect with the set of data items read
write(A)
by T, and
. T, completes its write phase before T starts validation: read(s), write(®)
start(T) < finish(T7,) < validation(T) ety
.
read(B)
— start, read(C)
v T1
read(B)
| read(C)
| T2
validate/finish
—‘ T3 validate/finish
write(C)
‘i‘ T4 validate/finish
start, read(C)
lv] T5
write(C)
validate/finish
write(B)
validate/finish
What values of "A" and "C" would T3 and T2 read respectively? See
Q 1 1 — 8 the "?2222?" for the specific instructions.
@ T2 willread C=2, T3willread A= 1
O T2 will read C=2, T3 will read A=3
O T2 will read C = 4, T3 will read A= 1
Q8.1 D T2 will read C =4, T3 will read A=3
1 Point
Explanation
™ T2 T3 T4 T5 Snapshot reads are always satisfied by either
Start the snapshot values (values at transaction start
or by values written by the same transaction.
R(B)> 2 y y
R(C)>2
Start
R(A) > 1
R(B)> 2 Q8.2
Start 1 Point
Start Of the three transactions T1, T2, and T3, that have made a Commit-
R(A) > 1 Req, which ones will be allowed to commit?
WA :=43) @® T1 and T2 will be allowed to commit.
Commit-Req
Commit O T1 and T3 will be allowed to commit.
R(A) > 7727?72 O T2 and T3 will be allowed to commit.
W(A:=2) .) _
. O All three will be allowed to commit.
Commit-Req
Start
R(C)>2 Explanation
W(C :=4) All read transactions (T2) commit in snapshot isolation.
Commit-Req
Commit T1 succeeds because it's writeset (B) does not intersect
R(C) > 7?77?77 with that of any other committed transaction.
Commit-Req
T3 fails because during the course of its execution
WE) =3 (between its start and commit), one of the items in its
Cgmn;i(-ﬂgq writeset (A) was written back by another transaction (T4).

Q2

2 Points

Q12-2

The main difference between strict 2PL and rigorous 2PL is that --
for the latter, the serializability order is the same as the commit
order (i.e., if you were to draw a precedence graph and find the
serial schedule -- it would be consistent with the order in which the
transactions committed).

Show through an example how this is not true for Strict 2PL.
More specifically, provide an example schedule using two
transactions that follows Strict 2PL, but the serializability order is
different from the commit order.

(show lock acquisitions (and type), releases, commits, reads, writes)

Explanation

t1 t2
S(A)
read(A)
release(A)

X(A)

write(A)

release(A)

commit
commit

Q12 -3 o

Which rule(s) of log-based recovery does the following schedule

Q5.1
2 Points

Which rule(s) of log-based recovery does the following schedule
violate ?

Transaction ID Instruction Log Record and Number

T B=B+100 1:<T1, UPDATE, B, 100 --> 200>

T2 C=C-900 2:<T2, UPDATE, C, 1000 --> 900>
output(C)

T A=A-100 3:<T1, UPDATE, A, 400 --> 300>

output(Log Record 1)

output(Log Record 2)

[J Write-ahead logging: log record 1 needs to be output before
B

| Write-ahead logging: log record 2 needs to be output before
C

] In-order logging: log record 2 must be output before log
record 1

] No steal: B should not be output before T1 has committed

violate ?

Transaction ID Instruction

Log Record and Number

(@)T1 A=A+100 1: <T1, UPDATE, A, 100 --> 200>
(b)T2 B=B+100 2: <T2, UPDATE, B, 300 --> 400>
(c) output(B)

(d)T2 undo 3:<T2, CLR, B, 300>

(e) output(Log record 2)

[GR COMMIT 4:<T1, COMMIT>

(@) output(Log Record 1)

(h) output(Log Record 3)

(i) output(Log Record 4)

[v| Write-ahead logging: log record 2 needs to be output before
B

[v| In-order logging: log record 1 must be output before log
record 2

No steal: B should not be output before T2 has
committed/aborted

Q12-6

Q6

2 Points

Consider the following log trace. What should be the values of the
two attributes after restart recovery? The update log records list the
old value first, and the new value second. CLR stands for
Compensation Log Record -- these are log records written out
during UNDO.

<T1, START>, <T2, START>, <T3, START>
<T1, UPDATE, A, 1000 --> 900>

<T3, UPDATE, A, 900 --> 800>

<T3, CLR, A, 900>

<T1, COMMIT>

e <T2, UPDATE, A, 900 --> 700>

e <T2, UPDATE, B, 900 --> 1000>

e <T3, ABORT>

® cooeoeee SYSTEM CRASH -------

O A=700, B =900
® A =900, B =900
O A=2800, B=1000
O A=900, B =1000

Q12-7

Q7

2 Points

Consider the following log trace. The update log records list the old
value first, and the new value second. CLR stands for Compensation
Log Record -- these are log records written out during UNDO.

What should be the values of the two attributes after restart
recovery?

<T1, START>, <T2, START>, <T3, START>, <T4, START>
<T1, UPDATE, B, 800 --> 700>

<T2, UPDATE, A, 800 --> 700>

<T1, COMMIT>

<T3, UPDATE, B, 700 --> 600>

<T3, CLR, B, 700>

<T4, UPDATE, C, 800 --> 500>

® e SYSTEM CRASH -------

O A=500and B =700
O A=500and B = 800
@® A=2800and B =700
O A=2800and B =800
O A=700and B = 600

Final

¢ snapshot isolation
° first committer / first updater
e timestamp
¢ validation-based (optimistic)
. isolation models
. read-committed, read-uncommitted, repeatable-read
e serializability
o types
. strict
= rigorous
° issues / definitions
= dirty writes
. recoverable
= cascading aborts

° locks

. intention locks
° conflict

= precedence graph
o view

o thomas’s write rule
¢ deadlocks
° avoidance: well-known lock ordering
o detection: graph
° fixing: wound-wait vs wait-die
¢ buffer manager
o no-force, steal
o relation/ log pg ordering
* recovery
° active transaction list
o clear

¢ not comprehensive
* same room
10:30-12:30 12/12
* 10-ish questions
120 minutes
 about

Class grades

- updated assignment weights
- hwll now reflected

out of 74 pts on 12/5

|Minimum |E ﬂ

Maximum [o

Mean [s

[Std Dev [664
e Syllabus:

Final course grades will be curved as
necessary (roughly the avg/median is a B-, w/
A- and C- one stdev up and down. The curve
is based the entirety of the the coursework at
the end of the semester.

current 12/5 w/ 74% of grade
PTS PCT
stdev 6.64 9.0%
avg 5746 77.6%
A- 64.1 86.6%
B- 575 77.6%
C- 50.8 68.7%

