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Abstract
Do some storage interfaces enable higher performance than

others? Can one identify and exploit such interfaces to re-

alize high performance in storage systems? This paper an-

swers these questions in the affirmative by identifying nil-
externality, a property of storage interfaces. A nil-externalizing

(nilext) interface may modify state within a storage system

but does not externalize its effects or system state immedi-

ately to the outside world. As a result, a storage system can

apply nilext operations lazily, improving performance.

In this paper, we take advantage of nilext interfaces to

build high-performance replicated storage. We implement

SKYROS, a nilext-aware replication protocol that offers high

performance by deferring ordering and executing operations

until their effects are externalized. We show that exploit-

ing nil-externality offers significant benefit: for many work-

loads, SKYROS provides higher performance than standard

consensus-based replication. For example, SKYROS offers

3× lower latency while providing the same high throughput

offered by throughput-optimized Paxos.

CCS Concepts: • Information systems → Distributed
storage; Storage replication.

Keywords: Fault-tolerance, Replication, Storage

1 Introduction
Defining the right interfaces is perhaps the most important

aspect of system design [46], as well-designed interfaces of-

ten lead to desirable properties. For example, idempotent in-

terfaces make failure recovery simpler [13, 70]; commutative

interfaces enable scalable software implementations [14].

In a similar spirit, this paper asks: Do some types of in-

terfaces enable higher performance than others in storage

systems? Our exercise in answering this question has led us
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to identify an important storage-interface property which

we call nil-externality. A nil-externalizing (nilext) interface

may modify state within a storage system but does not exter-

nalize its effects or system state immediately to the outside

world (apart from the acknowledgment itself). As a result,

a storage system can apply a nilext operation in a deferred

manner after acknowledgment, improving performance.

In this paper, we exploit nil-externality to design high-

performance replicated storage that offers strong consis-

tency (i.e., linearizability [36]). A standard approach today

to building such a system is to use a consensus protocol like

Paxos [44], Viewstamped Replication (VR) [52], or Raft [62].

For example, Facebook’s ZippyDB uses Paxos to replicate

RocksDB [73]; Harp builds a replicated file system using

VR [53]; other examples exist as well [7, 17, 18, 22].

A storage system built using this standard approach per-

forms several actions before it returns a response to a request.

Roughly, the system makes the request durable (if it is an

update), orders the request with respect to other requests,

and finally executes the request. Usually, a leader replica

orchestrates these actions [52, 62]. Upon receiving requests,

the leader decides the order and then replicates the requests

(in order) to a set of followers; once enough followers re-

spond, the leader applies the requests to the system state and

returns responses. Unfortunately, this process is expensive:

updates incur two round trips (RTTs) to complete.

The system can defer some or all of these actions to im-

prove performance. Deferring durability, however, is unsafe:

if an acknowledged write is lost, the system would violate

linearizability [31, 48]. Fortunately, durability can be ensured

without coordination: clients can directly store updates in

a single RTT on the replicas [64, 80]. However, ordering

(and subsequent execution) requires coordination among the

replicas and thus is expensive. Can a system hide this cost

by deferring ordering and execution?

At first glance, it may seem like all operations must be

synchronously ordered and executed before returning a re-

sponse. However, we observe that if the operation is nilext,

then it can be ordered and executed lazily because nilext

operations do not externalize state or effects immediately.

Nilext interfaces have performance advantages, but are

they practical? Perhaps surprisingly, we find that nilext inter-

faces are not just practical but prevalent in storage systems

(§2). As a simple example, consider the put interface in the

key-value API. Put is nilext because it does not externalize

440

https://doi.org/10.1145/3477132.3483543
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477132.3483543&domain=pdf&date_stamp=2021-10-26


SOSP ’21, October 26–29, 2021, Virtual Event, Germany A. Ganesan, R. Alagappan, A. Arpaci-Dusseau, R. Arpaci-Dusseau

the state of the key-value store: it does not return an execu-

tion result or an execution error (for instance, by checking

if the key already exists). In fact, popular key-value stores

such as RocksDB [29], LevelDB [33], and others built atop

write-optimized structures (like LSMs [63] and B
𝜖
-trees [8])

transform all updates into nilext writes by design; querying

a write-optimized structure before every update can be very

expensive [6]. Thus, in these systems, even updates that read

prior state and modify data are nilext (in addition to blind

writes that simply overwrite data).

Nilext-aware replication is a new approach to replication

that takes advantage of nil-externality of storage interfaces

(§3). The key idea behind this approach is to defer ordering

and executing operations until their effects are externalized.

Because nilext updates do not externalize state, they aremade

durable immediately, but expensive ordering and execution

are deferred, improving performance. The effects of nilext

operations, however, can be externalized by later non-nilext
operations (e.g., a read to a piece of state modified by a

nilext update). Thus, nilext operations must still be applied

in the same (real-time) order across replicas for consistency.

This required ordering is established in the background and

enforced before the modified state is externalized. While

nilext interfaces lead to high performance, it is, of course,

impractical to make all interfaces nilext: applications do need

state-externalizing updates (e.g., increment and return the

latest value, or return an error if key is not present). Such

non-nilext updates are immediately ordered and executed

for correctness.

Nilext-aware replication delivers high performance in

practice. First, while applications do require non-nilext up-

dates, such updates are less frequent than nilext updates.

For instance, nilext set is the most popular kind of update

in Memcached [1]. Similarly, put, delete, and merge (read-
modify-writes that do not return results), which are all nilext,

are the dominant type of updates in ZippyDB [11]. We find

similar evidence in production traces from IBM [24] and

Twitter [79]. Further, while reads do externalize state, not

every read triggers synchronous ordering. In many work-

loads, updates to an object can be ordered and executed in

the background before applications read the object. Our anal-

yses of production traces from IBM COS [24] reveal that this

is indeed the case (§3.3).

Nilext-aware replication draws inspiration from the gen-

eral idea of deferring work until needed similar to lazy eval-

uation in functional languages [37], externally synchronous

file I/O [60], and previous work in databases [30, 68]. Here,

we apply this general idea to hide the cost of ordering and

execution in replicated storage. Prior approaches like specu-

lative execution [41, 42, 67] reduce ordering cost by eagerly

executing and then verifying that the order matches before

notifying end applications. Nilext-aware replication, in con-

trast, realizes that some operations can be lazily ordered and

executed after notifying end applications of completion.

We build SKYROS, a new protocol that adapts state ma-

chine replication [71] to take advantage of nilext interfaces

(§4). The main challenge in our design is to ensure lineariz-

ability (especially during view changes) while maintain-

ing high performance. To this end, SKYROS applies many

techniques. SKYROS first uses supermajority quorums and

a new durability-log design to complete nilext writes in

one RTT. Second, SKYROS implements an ordering-and-

execution check to serve reads in one RTT. Finally, SKYROS

employs a DAG-based order-resolution technique to recon-

struct the linearizable order during view changes.

While SKYROS defers ordering, Generalized Paxos [45],

Curp [64], and other protocols [58, 65] realize that ordering

is in fact not needed when operations commute. However,

these protocols incur overhead when writes conflict and

when interface operations do not commute. For instance,

when multiple writers append records to a file (a popular

workload in GFS [32]), these protocols incur high overhead (2

or 3 RTTs in Curp). In contrast, SKYROS can defer ordering

such operations because they are nilext. More importantly,

nil-externality is compatible with commutativity: a nilext-

aware protocol can also exploit commutativity to quickly

commit non-nilext updates. We build SKYROS-COMM, a vari-

ant of SKYROS to demonstrate this compatibility.

Our experiments (§5) show that SKYROS offers 3× higher

throughput than Paxos (without batching) for a nilext-only

workload. While batching improves Paxos’ throughput, at

peak throughput, SKYROS offers 3.1× lower latency. We run

extensive microbenchmarks, varying request ratios, distribu-

tions, and read-latest fractions. SKYROS outperforms Paxos

(with batching) in most cases; even when pushed to extremes

(e.g., all non-nilext writes), SKYROS performs as well as

Paxos. Under write-heavy YCSB workloads, SKYROS is 1.4×
to 2.3× faster. For read-heavy workloads, while through-

put gains are marginal, SKYROS reduces p99 latency by

70%. We also use SKYROS to replicate RocksDB with high

performance. Finally, we compare SKYROS to Curp [64],

a recent commutative protocol. Curp performs well (like

SKYROS) when operations commute. However, when opera-

tions do not commute but are nilext, SKYROS offers advan-

tages: SKYROS provides 2× better throughput for file record

appends and 2.7× lower p99 latency in a key-value store.

SKYROS-COMM combines the best of both worlds: it quickly

completes nilext operations and exploits commutativity to

speedup non-nilext operations.

This paper makes four contributions.

• We first identify nil-externality, a property of storage in-

terfaces, and show its prevalence.

• We show how one can exploit this property to improve

the performance of strongly consistent storage systems.

• Third, we present the design and implementation of SKYROS,

a nilext-aware replication protocol.

• Finally, we demonstrate the performance benefits of SKYROS

through rigorous experiments.
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2 Nil-Externalizing Interfaces
We first define nil-externality and describe its attributes. We

next analyze which interfaces are nilext in three example

storage systems; then, we discuss opportunities to improve

performance by exploiting nilext interfaces in general.

2.1 Nil-externality
We define an interface to be nil-externalizing if it does not

externalize storage-system state: it does not return an execu-

tion result or an execution error, although it might return an

acknowledgment. A nilext interface can modify state in any

way (blindly set, or read and modify). The state modified by

a nilext operation can be externalized at a later point by an-

other non-nilext operation (e.g., a read). Note that although

nilext operations do not return an execution error, they may

return a validation error. Validation errors (e.g., a malformed

request) do not externalize state and can be detected without

executing the operation. Thus, an operation that returns only

validation errors (but not execution errors) is nilext.

Determining whether or not an operation is nilext is sim-

ple in most cases. Nil-externality is an interface-level prop-

erty: it suffices to look at the interface (specifically, the return

value and the possible execution errors) to say if an operation

is nilext. Nil-externality is a static property: it is independent

of the system state or the arguments of an operation; one can

therefore determine if an operation is nilext without having

to reason about all possible system states and arguments.

2.2 Nil-externality in Storage Systems
We now analyze which interfaces are nilext in three storage

systems that expose a key-value API (see Table 1). We pick

these systems as candidates given their widespread use [11,

27, 55, 61]; exploiting nilext interfaces in these systems to

improve performance can benefit many deployments.

RocksDB and LevelDB are LSM-based [63] key-value stores.

Put in these systems is a nilext interface: it does not return

an execution result or an error by checking record-existence.

Similarly, write (multi-put) is also nilext. Delete is nilext be-
cause it does not return an error if the key is not present; it

simply inserts a tombstone for the key. Surprisingly, even

read-modify-writes (RMW) are nilext. RocksDB supports

RMW via the merge operator [28], which is implemented

as an upsert [6]. An upsert encodes a modification by spec-

ifying a key 𝑘 and a function 𝐹 that transforms the value

of 𝑘 . In RocksDB and other stores [15, 33] built upon write-

optimized structures (LSMs and B
𝜖
-trees), reading the value

of a key before updating it is expensive [6, 11, 28]. Thus,

an upsert is not immediately applied, but the function and

the key are simply recorded. Since an upsert is not applied

immediately, it does not return an execution result or an

execution error and thus merge is nilext. In fact, all modifi-

cations in write-optimized stores are a form of upserts that

avoid querying before updates [6], and thus are all nilext; for

instance, the tombstone inserted upon a delete is an upsert.

Finally, get externalizes system state and so is not nilext.

System Update ReadNilext Non-nilext

RocksDB put,write,

delete,merge

get,multiget

LevelDB put,write,

delete

get,multiget

Memcached set

add
𝑒
,delete

𝑒
,cas

𝑟
,replace

𝑒
,

append
𝑒
,decr

𝑟
,incr

𝑟
,prepend

𝑒 get,gets

Table 1. Nil-externality in Storage Systems. The table shows
which operations are nilext in popular key-value systems. I 𝑒 denotes that
update interface I is non-nilext because it returns an execution error (e.g., key
not found); I 𝑟 denotes a non-nilext update that returns an execution result.

In Memcached, set is nilext because it does not return

an execution result or an error; all other update interfaces

are non-nilext. However, as we soon show (§3.3), these non-

nilext updates are used only rarely compared to nilext set.
Nilext updates can be completed faster than non-nilext

ones because their ordering and execution can be deferred.

Thus, operations such as put and set in the above systems

can be completed quickly, improving performance. What

such opportunities exist across storage systems in general?

A typical storage system supports three kinds of operations:

reads, writes, and RMWs [10, 76]. While reads are non-nilext,

writes and RMWs can be further classified based on whether

or not they externalize state. Thus, some writes are nilext

(e.g., RocksDB put), while others are not (e.g., Memcached

add); similarly, some RMWs are nilext (e.g., RocksDBmerge),
while some are not (e.g., Memcached incr). A system can

lazily apply all such nilext updates to improve performance.

Note that while nilext operations do not return errors as

part of their contract, a system that lazily applies nilext writes

may encounter errors (e.g., due to insufficient disk space or

a bad block) at a later point. A storage system that eagerly

applies updates can detect such errors early on. Fortunately,

this difference is not an obstacle to realizing the benefits of

nilext interfaces in practice as we discuss later (§4.8).

Given the benefits of nilext interfaces, it is worthwhile

to make small changes to a non-nilext interface’s semantics

to make it nilext when possible. For instance, a Btree-based

store may return an error upon an update to a nonexistent

key; changing the semantics to not return such an error can

enable a system to replicate updates quickly. Such semantic

changes have been practical and useful in the past: MySQL-

TokuDB supports SQL updates that do not return the number

of records affected to exploit TokuDB’s fast upserts [66].

3 Nilext-aware Replication
We now describe how a replicated storage system can exploit

nil-externality to improve performance. To do so, we first

give background on consensus, a standard substrate upon

which strongly consistent storage is built. We then describe

the nilext-aware replication approach and show that its high-

performance cases are common in practice.We finally discuss

how this new approach compares to existing approaches.
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read

Leader

read

2 RTT

1 RTT

Client

Followers

write 1 RTT

Figure 1. Request Processing in Consensus. The figure shows
how writes and reads are processed in systems built atop consensus protocols.

3.1 Consensus-based Replication Background
Consensus protocols (e.g., Paxos, VR) ensure that replicas

execute operations in the same order. Clients submit opera-

tions to the leader which then ensures that replicas agree on

a consistent ordering of operations before executing them.

Figure 1 shows how requests are processed in the failure-

free case. Upon an update, the leader assigns an index, adds

the request to its log, and sends a prepare to the followers.

The followers add the request to their logs and respondwith a

prepare-ok. Once the leader receives prepare-ok from enough

followers, it applies the update and returns the result to the

client. Reads are usually served by the leader locally; the

leader is guaranteed to have seen all updates and so can

serve the latest data, preserving linearizability. Stale reads

on a deposed leader can be prevented using leases [52].

Latency is determined by the message delays in the proto-

col: updates take two RTTs and reads one RTT. Throughput

is determined by the number of messages processed by the

leader [21]. Practical systems [3] batch requests to reduce the

load on the leader. While batching improves throughput, it

increases latency, a critical concern for applications [67, 69].

3.2 Exploiting Nil-externality for Fast Replication
Using an off-the-shelf consensus protocol to build replicated

storage leads to inefficiencies because this approach is obliv-

ious to the properties of the storage interface. In particular,

it is oblivious to nil-externality: all updates are immediately

ordered and executed. Our hypothesis is that a replication

protocol can deliver higher performance if it is cognizant of

the underlying storage interface. Specifically, if a protocol is

aware of nil-externality, it can delay ordering and execution,

improving performance. We now provide an overview of

such a protocol. We describe the detailed design soon (§4).

A nilext-aware protocol defers ordering and execution of

operations until their effects are externalized. Figure 2 shows

how such a protocol handles different operations. First, nilext

writes are made durable immediately, but their ordering and

execution are deferred. Clients send nilext writes to all repli-

cas. Clients wait for enough replies including one from the

leader before they consider the request to be completed.

Nilext writes thus complete in one RTT. At this point, the op-

eration is durable and considered complete; clients can make

progress without waiting for the operation to be ordered and

executed. We say that an operation is finalized when it is

assigned an index and applied to the storage system.

State modified by nilext updates can be externalized later

by other non-nilext operations (e.g., reads). Therefore, the

read: 
updates

 finalized

Leader background finalize: 
asynchronously
order & execute

1 RTT
read: updates 

not finalized yet
or non-nilext write

synchronously finalize: 
order & execute now

2 RTT1 RTT

Client

Followers

nilext
write

Fast operations Slow operations

Figure 2. Nilext-aware Replication. The figure shows how a nilext-
aware replication protocol handles different operations.

protocol must ensure that replicas apply the updates in the

same order and it has to do so before the modifications are

externalized. Thus, upon receiving a read, the leader checks

if there are any unfinalized updates that this read depends

upon. If no, it quickly serves the read. Conversely, if there are

unfinalized updates, the leader synchronously establishes

the order and waits for enough followers to accept the order;

the leader then applies the pending updates and serves the

read. In practice, most reads can be served without trigger-

ing synchronous ordering and execution because the leader

keeps finalizing updates in the background; thus, in most

cases, updates are finalized already by the time a read arrives.

Finally, the protocol does not defer ordering and executing

non-nilext updates. Clients submit non-nilext requests to the

leader which finalizes the request by synchronously ordering

and executing it (and the previously completed requests).

A nilext-aware protocol can complete nilext updates in one

RTT; non-nilext updates take two RTTs. A read can be served

in one RTT if prior nilext updates that the read depends

upon are applied before the read arrives. Thus, exploiting nil-

externality offers benefit if a significant fraction of updates

is nilext and reads do not immediately follow them. We next

show that these conditions are prevalent in practice.

3.3 Fast Case is the Common Case
We first analyze the prevalence of nilext updates. First, we

note that in some systems, almost all updates are nilext (e.g.,

write-optimized key-value stores as shown in Table 1). Some

systems like Memcached have many non-nilext interfaces.

However, how frequently do applications use them? To an-

swer this question, we examine production traces [75, 79]

from Twemcache, a Memcached clone at Twitter [74]. The

traces contain ~200 billion requests across 54 clusters. Twem-

cache supports 9 types of updates (similar to Memcached as

shown in Table 1). Except for set, others are non-nilext.
We consider 29 clusters that have at least 10% updates.

Figure 3(a) shows the distribution of nilext percentages. In

Twemcache, in 80% of the clusters, more than 90% of updates

are nilext (set). This aligns with Memcached’s expected us-

age [1] that most updates are sets and others are only spar-

ingly used. Also, among the eight non-nilext updates, appli-

cations used only five: add, cas, delete, incr, and prepend.
Among these, only incr and cas return an execution result,

while others return execution errors; perhaps changing the
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Figure 3. Fast Case is Common. (a) shows the distribution of nilext
percentages; a bar for a range x%-y% shows the percentage of clusters where
x%-y% of updates are nilext. (b) shows the distribution of percentage of reads
within𝑇𝑓 ; a bar for x%-y% shows the percentage of clusters where x%-y% of
reads access objects updated within𝑇𝑓 . We consider𝑇𝑓 =1s, 50ms.

interface (to not return errors) can enable a replication pro-

tocol to realize higher performance.

We performed a similar analysis on the IBM-COS traces

across 35 storage clusters with at least 10% writes (out of

98 in total) [24]. COS supports three kinds of updates: put,
copy, and delete. While put and copy are nilext, delete is
not; it returns an error if the object does not exist. In about

65% clusters, more than half of the updates are nilext; these

operations can be completed quickly. Again, if the semantics

of delete can be modified, all updates can be made faster.

We next analyze how often reads may incur overhead. A

read will incur overhead if there are unfinalized updates to

the object being read. Let 𝑇𝑓 be the time taken to finalize

updates.We thus measure the time interval between a read to

an object and the prior write to the same object, and calculate

the percentage of reads for which this interval is less than

𝑇𝑓 . We use the IBM-COS traces for this analysis because the

Twemcache traces do not have millisecond-level timestamps.

Figure 3(b) shows the distribution of percentage of reads

that access items updated within 𝑇𝑓 . We first consider 𝑇𝑓 to

be 1s. Even with such an unrealistically high 𝑇𝑓 , in 66% of

clusters, only less than 5% of reads access objects modified

within 1s. We next consider a more realistic 𝑇𝑓 of 50ms.

𝑇𝑓 =50ms is realistic (but still conservative) because these

traces are from a setting where replicas are in different zones

of the same geographical region, and inter-zone latencies are

~2 ms [38]. With 𝑇𝑓 =50 ms, in 85% of clusters, less than 5%

of reads access objects modified within 50 ms; thus, only a

small fraction of reads in a nilext-aware protocol may incur

overhead in practice. Further, not all such reads will incur

overhead due to prior reads to unfinalized updates and non-

nilext updates that would force synchronous ordering.

3.4 Comparison to Other Approaches
While nilext-aware replication defers ordering, prior work

has built solutions to efficient ordering. The nilext-aware

approach offers advantages over such prior solutions. While

we focus on consensus-based approaches here, other ways

to construct replicated storage systems exist; we discuss how

exploiting nil-externality applies to them as well.

3.4.1 EfficientOrdering inConsensus. Prior approaches
to efficient ordering broadly fall into three categories.

Network Ordering. This approach enforces ordering in the

network [21, 50]: the network consistently orders requests

across replicas in one RTT, improving performance. In con-

trast, a nilext-aware protocol does not require a specialized

network and thus applies to geo-replication as well.

Speculative Execution. This approach employs speculative

execution to reduce ordering cost [42, 67]. Replicas specula-

tively execute requests before agreeing on the order. Clients

then compare responses from different replicas to detect

inconsistencies and replicas rollback their state upon diver-

gence. Replicas can thus be in an inconsistent state before the

end application is acknowledged. However, when end appli-

cation is notified, the system ensures that the requests have

been executed in the correct order. In contrast, the nature

of nilext interfaces allows one to defer ordering and execu-

tion even after the application is notified of completion; only

durability must be ensured before notifying. Ordering and

execution are performed only when the effects are external-

ized by later operations. Also, a nilext-aware protocol does
not require replicas to do rollbacks, reducing complexity.

Exploiting Commutativity. This approach (used in Gen-

eralized Paxos [45], EPaxos [58]) realizes that ordering is

not needed when updates commute. Both commutative and

nilext-aware protocols incur overhead when reads access

unfinalized updates. However, as we show (§5.7), commuta-

tive protocols can be expensive when updates conflict and

when operations do not commute. Nilext-aware replication,

in contrast, always completes nilext updates in one RTT.

Finally, nil-externality and commutativity are not at odds: a

nilext-aware protocol can exploit commutativity to commit

non-nilext writes faster (§5.7).

3.4.2 OtherApproaches toReplicated Storage. Shared
registers [4], primary-backup [9], and chain replication [76]

offer other ways to building replicated storage. Storage sys-

tems that support only reads and writes can be built us-

ing registers which are not subject to FLP impossibility [4].

However, shared registers cannot readily enable RMWs [2,

10], a common requirement in modern storage APIs. Start-

ing with state machines as the base offers more flexibility

and exploiting nil-externality when possible leads to high

performance. Gryff [10] combines registers (for reads and

writes) and consensus (for RMWs); however, Gryff’s writes

take 2 RTTs. Primary-backup, chain replication, and other

approaches [19] support a richer API. However, primary-

backup also incurs 2 RTTs for updates [51, 64]; similarly,

updates in chain replication also incur many message delays.

The idea of exploiting nil-externality can be used to hide

the ordering cost in these approaches as well; we leave this

extension as an avenue for future work.

Summary. Unlike existing approaches, nilext-aware replica-
tion takes advantage of nil-externality of storage interfaces.
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Upcalls into storage system
 MakeDurable
    add a nilext update to durability log
 Read
    read item; returns <need_sync, data>
 Apply
    apply request to state; optionally return result
 GetDurabilityLogEntries
    used in background ordering and view-change

   

 

Client interface                        
InvokeNilext(req)
    sent to all replicas
    wait for ack from supermajority
    (including one from the leader)
InvokeNonNilext(req)
InvokeRead(req)
  sent only to the leader
     wait for result from the leader

Figure 4. Client Interface and Upcalls. The figure shows the client
interface and the upcalls the replication layer makes into the storage system.

It should perform well in practice: nilext updates contribute

to a large fraction of writes and reads do not often access

recent updates. This approach offers advantages over exist-

ing efficient ordering mechanisms: it requires no network

support; it can defer execution beyond request completion

and does not require rollbacks; it offers advantages over and

combines well with exploiting commutativity.

4 SKYROS Design and Implementation
We now describe the design of SKYROS. We first provide an

overview (§4.1), describe normal operation (§4.2 – §4.5), and

explain recovery and view change (§4.6). We then show the

correctness of SKYROS (§4.7). We finally discuss practical

issues we addressed in SKYROS (§4.8).

4.1 Overview
We use VR (or multi-paxos) as our baseline to highlight the

differences in SKYROS. VR tolerates up to 𝑓 failures in a

system with 2𝑓 + 1 replicas. It is leader-based and makes

progress in a sequence of views; in each view, a single replica

serves as the leader. VR implementations offer linearizabil-

ity [36]: operations are executed in real-time order, and each

operation sees the effect of ones that completed before it.

SKYROS preserves all these properties: it provides the same

availability, is leader-based, and offers linearizability.

In VR, the leader establishes an order by sending a prepare
and waiting for prepare-ok from 𝑓 followers. The leader then

does an Apply upcall into the storage system to execute

the operation. SKYROS changes this step in an important

way: while SKYROS makes updates immediately durable, it

defers ordering and executing them until their effects are

externalized. To enable this, SKYROS augments the interface

between the storage system and the replication layer with

additional upcalls (as shown in Figure 4). During normal

operation, SKYROS processes different requests as follows:

• Clients submit nilext updates to all replicas using Invoke-
Nilext. Since nil-externality is a static property (it does not
depend upon the system state), clients can decide which

requests are nilext and invoke the appropriate call. Upon

receiving a nilext update, replicas invoke theMakeDurable
upcall to make the operation durable (§4.2).

• Although nilext updates are not immediately finalized,

they must be executed in the same real-time order across

replicas. The leader gets the replicas to agree upon an order

and the replicas apply the updates in the background (§4.3).

• Clients send read requests to the leader via InvokeRead.
When a read arrives, the leader does a Read upcall. If all
updates that the read depends upon are already applied,

the read is served quickly; otherwise, the leader orders

and executes updates before serving the read (§4.4).

• Clients send non-nilext updates to the leader via Invo-
keNonNilext; such updates are immediately finalized (§4.5).

4.2 Nilext Updates
Clients send nilext updates directly to all replicas including

the leader to complete them in one RTT. Each request is

uniquely identified by a sequence number, a combination of

client-id and request number. Similar to VR, only replicas in

the normal state reply to requests and duplicate requests are

filtered. A replica stores the update by invokingMakeDurable.
SKYROS replicas store these durable (but not yet ordered

or applied) updates in a separate durability log; each replica

thus has two logs: the usual consensus log and the durability

log. Once a replica stores the update in the durability log, it

responds directly to the client; the replica adds its current

view number in the response. For a nilext update, clients

wait for a supermajority of 𝑓 + ⌈𝑓 /2⌉ + 1 acknowledgments

in the same view including one from the leader of the view.

Figure 5(a)(i) shows how a nilext update 𝑎 is completed.

Note that an update need not be added in the same posi-

tion in the durability logs across replicas. For example, in

Figure 5(b)(i), 𝑏 is considered completed although its posi-

tion is different across durability logs. Then, why do SKYROS

replicas use a durability log instead of a set? Using an un-

ordered set precludes the system from reconstructing the

required ordering between updates upon failures. For exam-

ple, in Figure 5(b)(i) and (b)(ii), 𝑏 follows 𝑎 in real time (i.e.,

𝑎 completed before 𝑏 started) and thus must be applied to

the storage system only after 𝑎. A log captures the order in

which the replicas receive the requests; SKYROS uses these

logs to determine the ordering of requests upon failures.

Why is a simple majority (𝑓 + 1) insufficient? Consider

an update 𝑏 that follows another update 𝑎 in real-time. Let’s

suppose for a moment that we use a simple majority. A possi-

ble state then is < 𝐷1 : 𝑎𝑏, 𝐷2 : 𝑎𝑏, 𝐷3 : 𝑎𝑏, 𝐷4 : 𝑏𝑎, 𝐷5 : 𝑏𝑎 >,

where 𝐷𝑖 is the durability log of replica 𝑆𝑖 . This state is possi-

ble because a client could consider 𝑎 to be completed once it

receives acknowledgment from 𝑆1, 𝑆2, and 𝑆3. Then, 𝑏 starts

and is stored on all durability logs and so is considered com-

pleted. 𝑎 now arrives late at 𝑆4 and 𝑆5. Assume the current

leader (𝑆1) crashes. Now, we have four replicas whose logs are

< 𝐷2 : 𝑎𝑏, 𝐷3 : 𝑎𝑏, 𝐷4 : 𝑏𝑎, 𝐷5 : 𝑏𝑎 >. With these logs, one

cannot determine the correct order. A supermajority quorum

avoids this situation. Writing to a supermajority ensures that

a majority within any available majority is guaranteed to

have the requests in the correct order in their durability logs.

We later show how by writing to a supermajority, SKYROS

recovers the correct ordering upon failures (§4.6, §4.7).
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Figure 5. SKYROS Writes and Reads, and Durability Log
States. (a) shows how Skyros processes nilext writes and reads; d-log: dura-
bility, c-log: consensus log, L: leader; f=2 and supermajority=4. (b) shows the
possible durability logs for two completed nilext operations 𝑎 and 𝑏. In (i) and
(ii), 𝑏 follows 𝑎 in real time, whereas in (iii) and (iv), they are concurrent.

During normal operation, the leader’s durability log is

guaranteed to have the updates in the correct order. This is

because a response from the leader is necessary for a request

to complete. Thus, if an update 𝑏 follows another update 𝑎

in real-time, then the leader’s durability log is guaranteed to

have 𝑎 before 𝑏 (while some replicas may contain them in a

different order as in Figure 5(b)(ii)). This guarantee ensures

that when clients read from the leader, they see the writes

in the correct order. The leader uses this property to ensure

that operations are finalized to the consensus log in the

correct order. If 𝑎 and 𝑏 are concurrent, they can appear in

the leader’s log in any order as in Figure 5(b)(iii) and (b)(iv).

4.3 Background Ordering and Execution
While nilext updates not are immediately ordered, they must

be ultimately executed in the same real-time order across

replicas. The leader is guaranteed to have all completed up-

dates in its durability log in real-time order. Periodically,

the leader takes an update from its durability log (via the

GetDurabilityLogEntries upcall), adds it to the consensus log,

and initiates the usual ordering protocol. Once 𝑓 followers

respond after adding the request to their consensus logs, the

leader applies the update and removes it from its durability

log. At this point, the request is finalized. As in VR, the leader

sends a commit for the finalized request; the followers apply

the update and then remove it from their durability logs.

Note that this step is the same as in VR; once 𝑓 + 1 nodes
agree on the order, at least one node in any majority will

have requests in the correct order in its consensus log.

The leader employs batching for the background work;

it adds many requests to its consensus log and sends one

prepare for the batch. Once 𝑓 followers respond, it applies

batch and removes it from the durability log.

4.4 Reads
Clients read only at the leader in SKYROS (like in many

linearizable systems). When a read arrives, the leader does a

Read upcall. The storage system then performs an ordering

and execution check: it consults the durability log to check if

there are any pending updates that this read depends upon.

For example, a key-value store would check if there is a

pending put or merge to the key being read. Note that this

check is system-specific, which led to our design rationale

of maintaining the durability log within the storage system,

giving it visibility in to the pending updates to perform the

check. The storage system maintains an efficient index (such

as a hash table) to quickly lookup the log.

If there are no pending updates, the storage system popu-

lates the response by reading the state, sets the need_sync bit
to 0, and returns the read value to the replication layer. The

leader then returns the response to the client, completing

the read in one RTT (e.g., read-a in Figure 5(a)(ii)).

Conversely, if there are pending updates, the storage sys-

tem sets the need_sync bit. In that case, the leader synchronously
adds all requests from the durability log to the consensus

log to order and execute them (e.g., read-c in Figure 5(a)(iii)).

Once 𝑓 followers respond, the leader applies all the updates

and then serves the read. Fortunately, the periodic back-

ground finalization reduces the number of requests that must

be synchronously ordered and executed during such reads.

4.5 Non-nilext Updates
If an update externalizes state, then it must be immediately

ordered and executed. Clients send such non-nilext updates

only to the leader. The leader first adds all prior requests in

the durability log to the consensus log; it then adds the non-

nilext update to the end of the consensus log and then sends a

prepare for all the added requests. Once 𝑓 followers respond,

the leader applies the non-nilext update (after applying all

prior requests) and returns the result to the client.

4.6 Replica Recovery and View Changes
So far, we have described only the failure-free operation. We

now discuss how SKYROS handles failures.

Replica Recovery. Similar to VR, SKYROS does not write

log entries synchronously to disk (although it maintains

view information on disk). Thus, when a replica recovers

from a crash, it needs to recover its log. In VR, the replica

marks its status as recovering, sends a Recovery message,

and waits for a RecoveryResponse from at least 𝑓 +1 replicas,
including one from the leader of the latest view it sees in

these responses [52]. Then, it sets its log as the one in the

leader’s response. The replica then sets its status to normal.
Recovery in SKYROS is very similar with one change: the

replicas also send their durability logs in RecoveryResponse

and a replica sets its durability log as the one sent by the

leader. This step is safe because the leader’s durability log

contains all completed nilext updates in the correct order.

View Changes. In VR, when the leader of the current view

fails, the replicas change their status from normal to view-
change and run a view-change protocol. The new leader must

recover all the committed operations in the consensus log

before the system can accept requests. The new leader does

this by waiting for 𝑓 other replicas to send a DoViewChange

message [52]. In this message, a replica includes its view

number, its log, and the last view number in which its status

was normal. The leader then recovers the log by taking the
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1: procedure RecoverDurabilityLog
2: 𝐷 ← durability logs in the highest normal view

3: 𝐸 ← entries that appear in at least ⌈𝑓 /2⌉ + 1 logs in 𝐷

4: for 𝑣 ∈ 𝐸 do
5: add 𝑣 as a vertex in graph𝐺

6: for every pair (𝑎,𝑏) in 𝐸 do
7: 𝑛1 ← number of logs in 𝐷 where 𝑎 appears before 𝑏

8: 𝑛2 ← number of logs in 𝐷 where 𝑎 is present but not 𝑏

9: if 𝑛1 + 𝑛2 ⩾ ⌈𝑓 /2⌉ + 1 then
10: add an edge from 𝑎 to 𝑏 in𝐺

11: 𝑁𝐿𝐷 ← TopologicalSort(𝐺 )

⊲ 𝑁𝐿𝐷 is the new leader’s durability log

Figure 6. RecoverDurabilityLog. The figure shows the procedure to
recover the durability log at the leader during a view change.

most up-to-date
†
one among the 𝑓 +1 logs (including its own).

The leader then sends a StartViewmessage to the replicas in

which it includes its log; the leader sets its status as normal.
The replicas set their consensus log as the one sent by the

leader after which they set their status as normal. SKYROS

uses exactly the same procedure to recover operations that

have been finalized (i.e., operations in the consensus log).

Thus, finalized operations are safely recovered as in VR.

In SKYROS, the leader must additionally recover the dura-

bility log. The previous leader’s durability log would have

contained all completed operations. Further, the previous

leader’s durability log would have contained the completed

operations in the correct real-time order, i.e., if an operation

𝑎 had completed before 𝑏, then 𝑎 would have appeared be-

fore 𝑏. These same guarantees must be preserved in the new

leader’s durability log during a view change.

SKYROS replicas send their durability logs as well in the

DoViewChange message. However, it is unsafe for the new

leader to take one log in the responses as its durability log;

a single log may not contain all completed operations. Con-

sider three completed updates 𝑎, 𝑏, and 𝑐 , and let the dura-

bility logs be < 𝐷1 : 𝑎𝑏𝑐, 𝐷2 : 𝑎𝑐, 𝐷3 : 𝑎𝑏𝑐, 𝐷4 : 𝑎𝑏, 𝐷5 : 𝑏𝑐 >.

If 𝑆2, 𝑆4, and 𝑆5 participate in a view change, no single log

would contain all completed operations. Even if a single dura-

bility log has all completed operations, it may not contain

them in the correct real-time order. Consider 𝑎 completes

before 𝑏 starts, and 𝑐 is incomplete and let the durability logs

be < 𝐷1 : 𝑎𝑏, 𝐷2 : 𝑎𝑏, 𝐷3 : 𝑏𝑎𝑐, 𝐷4 : 𝑎𝑏, 𝐷5 : 𝑎𝑏 >. If 𝑆2, 𝑆3,

and 𝑆4 participate in a view change, although 𝐷3 contains

all completed operations, taking 𝐷3 as the leader’s log will

violate linearizability because 𝑏 appears before 𝑎 in 𝐷3.

To correctly recover the durability log, a SKYROS leader

uses the RecoverDurabilityLog procedure (Figure 6). We use

Figure 7 to illustrate how this procedure works. In this exam-

ple, 𝑓 =2; operations 𝑎, 𝑏, and 𝑐 completed, while 𝑑 did not. 𝑎

and 𝑏 were concurrent with each other, and 𝑐 started after

𝑎 and 𝑏 completed. Thus, the new leader must recover 𝑎, 𝑏,

†
i.e., the log from a replica with the largest normal view; if many replicas

have the same normal view, the largest log among them is chosen.
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Figure 7. RecoverDurabilityLog Example. The figure shows how
RecoverDurabilityLog works. 𝑆1, the leader of the previous view view-1, has
failed; this is a view-change for view-2 for which 𝑆2 is the leader.

and 𝑐 ; also, 𝑐 must appear after 𝑎 and 𝑏 in the recovered log.

The system must make progress with 𝑓 failures; thus, the

procedure must correctly recover the durability log with

𝑓 + 1 replicas participating in a view change. As in VR, upon

receiving 𝑓 +1DoViewChangemessages, the leader first finds

the highest normal view from the responses and considers

all durability logs in that view; we denote this set of logs as𝐷

(line 2). For example, in Figure 7(i), 𝑆2, 𝑆3, and 𝑆4 participate

in the view change and the last normal view of all replicas is 1.

Therefore,𝐷2,𝐷3, and𝐷4 are part of𝐷 . To recover completed

operations, the leader then checks which operations appear

in at least ⌈𝑓 /2⌉ + 1 logs in 𝐷 . Such operations are the ones

that the leader will recover as part of the new durability log;

we denote this set as 𝐸 (line 3). For example, in Figure 7(i),

𝑎, 𝑏, 𝑐 , and 𝑑 are part of 𝐸 (as they all appear in ⩾ 2 logs);

similarly, in Figure 7(ii), 𝑎, 𝑏, and 𝑐 are part of 𝐸.

The above steps give the operations that form the dura-

bility log, but not the real-time order among them. To deter-

mine the order, the leader considers every pair of operations

< 𝑥,𝑦 > in 𝐸, and counts the number of logs where 𝑥 appears

before 𝑦 or 𝑥 appears but 𝑦 does not. If this count is at least

⌈𝑓 /2⌉ + 1, then the leader determines that 𝑦 follows 𝑥 in real

time. In Figure 7(ii), 𝑎 appears before 𝑐 on ⩾ 2 logs and so

the leader determines that 𝑐 follows 𝑎. In contrast, 𝑎 does

not appear before 𝑏 (or vice versa) in ⩾ 2 logs and thus are

concurrent. Thus, this step gives only a partial order.

The leader constructs the total order as follows. It first

adds all operations in 𝐸 as vertices in a graph, 𝐺 (lines 4–5).

Then, for every pair of vertices < 𝑎, 𝑏 > in𝐺 , an edge is added

between 𝑎 and 𝑏 if on at least ⌈𝑓 /2⌉ + 1 logs, either 𝑎 appears

before 𝑏, or 𝑎 is present but not 𝑏 (lines 6–10). 𝐺 is a DAG

whose edges capture the real-time order between operations.

To arrive at the total order, the leader topologically sorts 𝐺

(line 11) and uses the result as its durability log (𝑁𝐿𝐷). In

Figure 7(ii), both 𝑏𝑎𝑐 and 𝑎𝑏𝑐 are valid total orders.

The leader then appends the operations from the durabil-

ity log to the consensus log; duplicate operations are filtered

using sequence numbers. Then, the leader sets its status

as normal. The leader then sends the consensus log in the

StartView message to the replicas (similar to VR). The fol-

lowers, on receiving StartView, replace their consensus logs

with the one sent by the leader and set their status to normal.
The system is now available to accept new requests.
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4.7 Correctness
Wenow show that SKYROS is correct. Two correctness condi-

tions must be met.C1: all completed and finalized operations

remain durable, C2: all operations are applied in the lineariz-

able order and an operation finalized to a position survives

in the same position. The proof sketch is as follows.

C1. Ensuring durability when the leader is alive is straight-

forward; a failed replica can recover its state from the leader.

Durability must also be ensured during view changes; the

new leader must recover all finalized and completed opera-

tions. Finalized operations are part of at least 𝑓 +1 consensus
logs. Thus, at least one among the 𝑓 + 1 replicas participat-
ing in the view change is guaranteed to have the finalized

operations and thus will be recovered (this is similar to VR).

Next we show that completed operations that have not

been finalized are recovered. Let 𝑣 be the view for which a

view change is happening and the highest normal view be

𝑣 ′. We first establish that any operation that completed in 𝑣 ′

will be recovered in 𝑣 . Operations are written to 𝑓 + ⌈𝑓 /2⌉ +1
durability logs before they are considered completed and

are not removed from the durability logs before they are

finalized. Therefore, among the 𝑓 + 1 replicas participating
in the view change for 𝑣 , a completed operation in 𝑣 ′ will
be present in at least ⌈𝑓 /2⌉ + 1 durability logs. Because the

new leader checks which operations are present in at least

⌈𝑓 /2⌉ + 1 logs (line 2 in Figure 6), operations completed in

𝑣 ′ that are not finalized will be recovered as part of the new

leader’s durability log.

We next show that operations that were completed in

an earlier view 𝑣 ′′ will also survive into 𝑣 . During the view

change for 𝑣 ′, the leader of 𝑣 ′ would have recovered the op-

erations completed in 𝑣 ′′ as part of its durability log (by the

same argument above). Before the view change for 𝑣 ′ com-

pleted, the leader of 𝑣 ′ would have added these operations

from its durability log to the consensus log. Any node in

the normal status in view 𝑣 ′ would thus have these opera-

tions in its consensus log. Consensus-log recovery would

ensure these operations remain durable in successive views

including 𝑣 .

C2. During normal operation, the leader’s durability log

reflects the real-time order. The leader adds operations to its

consensus log only in order from its durability log. Before

an (non-nilext) operation is directly added to the consensus

log, all prior operations in the durability log are appended

to the consensus log as well. Thus, all operations in the

consensus log reflect the linearizable order. Reads are served

by the leader which is guaranteed to have all acknowledged

operations; thus, any read to an object will include the effect

of all previous operations. This is because the leader ensures

that any pending updates that the read depends upon are

applied in a linearizable order before the read is served.

The correct order must also be maintained during view

changes. Similar to VR, the order established among the

finalized operations (in the consensus log) survives across

views; any operation committed to the consensus log will

survive in the same position.

Next, we show that the linearizable order of completed-

but-not-finalized operations is preserved. As before, we need

to consider only operations that were completed but not yet

finalized in 𝑣 ′; remaining operations will be recovered as part

of the consensus log. We now show that for any two com-

pleted operations 𝑥 and 𝑦, if 𝑦 follows 𝑥 in real time, then 𝑥

will appear before 𝑦 in the new leader’s recovered durability

log. Let𝐺 be a graph containing all completed operations as

its vertices. Assume that for any pair of operations < 𝑥,𝑦 >,

a directed edge from 𝑥 to 𝑦 is correctly added to 𝐺 if 𝑦 fol-

lows 𝑥 in real time (A1). Next assume that 𝐺 is acyclic (A2).
If A1 and A2 hold, then a topological sort of 𝐺 ensures that

𝑥 appears before 𝑦 in the result of the topological sort. We

show that A1 and A2 are ensured by SKYROS.

A1: Consider two completed operations 𝑎 and 𝑏 and that

𝑏 follows 𝑎 in real time. Since 𝑎 completed before 𝑏, when

𝑏 starts, 𝑎 must have already been present on at least 𝑓 +
⌈𝑓 /2⌉ + 1 durability logs; let this set of logs be 𝐷𝐿. Now, for

each log 𝑑𝑙 in 𝐷𝐿, if 𝑏 is written to 𝑑𝑙 , then 𝑏 would appear

after 𝑎 in 𝑑𝑙 . If 𝑏 is not written to 𝑑𝑙 , then 𝑎 would appear

in 𝑑𝑙 but not 𝑏. Thus, 𝑎 appears before 𝑏 or 𝑎 is present but

not 𝑏 on at least 𝑓 + ⌈𝑓 /2⌉ + 1 durability logs. Consequently,

among the 𝑓 + 1 replicas participating in view change, on at

least ⌈𝑓 /2⌉ + 1 logs, 𝑎 appears before 𝑏 or 𝑎 is present but

not 𝑏. Because the leader adds an edge from 𝑎 to 𝑏 when

this condition is true (lines 7–9 in Figure 6) and because it

considers all pairs, A1 is ensured. A2: Since ⌈𝑓 /2⌉ + 1 is a

majority of 𝑓 + 1, an opposite edge from 𝑏 to 𝑎 would not be

added to 𝐺 . Since all pairs are considered, 𝐺 is acyclic.

A completed operation is assigned a position only when

it is finalized. Since SKYROS adds an operation from the

durability log to the consensus only if it is already not present

in the consensus log, a completed operation is finalized only

once, after which it survives in the finalized position.

Model Checking.We have modeled the request-processing

and view-change protocols in SKYROS, and model checked

them.We explored over 2M states, inwhich the above correct-

ness conditions were met. Upon modifying the specification

in subtle but wrong ways, our model checker finds safety

violations. For example, in the RecoverDurabilityLog proce-

dure, an edge is added from 𝑎 to 𝑏 when 𝑎 appears before 𝑏 in

⌈𝑓 /2⌉ + 1 logs; if this threshold is increased, then a required

edge will not be added, leading to a linearizability violation

that the checker correctly flags; decreasing the threshold

makes𝐺 cyclic, triggering a violation. Similarly, the checker

finds a safety violation if durability-log entries are not added

to consensus log before sending StartView.

4.8 Practical Issues and Solutions
We now describe a few practical problems we handled in

SKYROS. We also discuss possible optimizations.
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Space and Catastrophic Errors. Because nilext updates

are not immediately executed, certain errors cannot be de-

tected. For instance, an operation can complete but may fail

later when applied to the storage system due to insufficient

space. A protocol that immediately executes operations, in

theory, could propagate such errors to clients. However, such

space errors can be avoided in practice by using space wa-

termarks that the replication layer has visibility into; once

a threshold is hit, the replication layer can throttle updates

while the storage system reclaims space. One cannot, how-

ever, anticipate catastrophic memory or disk failures. For-

tunately, this is not a major concern in practice. Given the

inherent redundancy, a SKYROS replica transforms such er-

rors into a crash failure; it is unlikely that all replicas will

encounter the same error. Note that these are errors that are

not part of the nilext interface contract. SKYROS checks for

all validation errors in the MakeDurable upcall.
Determining Nil-externality.While it is straightforward

in many cases to determine whether or not an interface is

nilext, occasionally it is not. For instance, a database update

may invoke a trigger which can externalize state. However,

when unsure, clients can safely choose to say that an inter-

face is non-nilext, forgoing some performance for safety.

Replica-group Configuration and Slow Path. In our im-

plementation, clients know the addresses of replicas from

a configuration value. During normal operation, SKYROS

clients contact all replicas in the group and wait for a super-

majority responses to complete nilext writes. If the system is

operating with a bare majority, then writes cannot succeed,

affecting availability. SKYROS handles this situation using a

slow path: after a handful of retries, clients mark requests

to be non-nilext and send it to the leader. These requests

are acknowledged after they are committed to a majority

consensus logs, allowing clients to make progress.

Possible Optimizations. In SKYROS, requests are initially

stored in the durability log. The leader later adds the requests

to its consensus log and replicates the consensus log. Our

current implementation sends the requests in their entirety

during background replication. This is unnecessary in most

cases because the replicas already contain the request in

their durability logs. A more efficient way would be to send

only the ordering information (i.e., the sequence numbers).

Second, locally, a copy between the durability log and the

consensus log can be avoided if the entries are stored in a

separate location and the log slots point to the entries. Finally,

SKYROS allows reads only at the leader; the burden on the

leader can be alleviated by using techniques such as quorum

reads [12] without impacting linearizability. We leave these

optimizations as an avenue for future work.

5 Evaluation
To evaluate SKYROS, we ask the following questions:

• How does SKYROS perform compared to standard replica-

tion protocols on nilext-only workloads? (§5.1)

• How does SKYROS perform on mixed workloads? (§5.2)

• How do read-latest percentages affect performance? (§5.3)

• Does the supermajority requirement in SKYROS impact

performance with many replicas? (§5.4)

• How does SKYROS perform on YCSB workloads? (§5.5)

• Does replicated RocksDB benefit from SKYROS? (§5.6)

• Does SKYROS offer benefit over commutative protocols?

Is nil-externality compatible with commutativity? (§5.7)

Setup. We run our experiments on five replicas; thus, f=2
and supermajority=4. Each replica runs on a m5zn bare-metal

instance [5] in AWS (US-East). Numbers reported are the

average over three runs. Our baseline is VR/multi-paxos

which implements batching to improve throughput (denoted

as Paxos). SKYROS also uses batching for background work.

Most of our experiments use a hash-table-based key-value

store; however, we also show cases with RocksDB.

5.1 Microbenchmark: Nilext-only Workload
We first compare the performance for a nilext-only workload.

Figure 8(a) plots the average latency against the throughput

when varying the number of clients. We also compare to

a no-batch Paxos variant in this experiment. In all further

experiments, we compare only against Paxos with batching.

Wemake three observations from the figure. First, SKYROS

and Paxos offer ~3× higher throughput than the Paxos no-

batch variant. Second, with a small number of clients, SKYROS

offers ~2× better latency and throughput than Paxos with

batching. Batching acrossmany clients improves the through-

put of Paxos. However, this affects latency: at about 100

KOps/s, SKYROS offers 3.1× lower latency than Paxos.

5.2 Microbenchmark: Mixed Workloads
We next consider mixed workloads. We use 10 clients.

Nilext and non-nilext writes. Figure 8(b)(i) shows the re-
sult for a workload with a mix of nilext and non-nilext

writes. With low non-nilext fractions, SKYROS offers 2×
higher throughput because most writes complete in 1 RTT.

As the non-nilext fraction increases, the benefits of SKYROS

reduces. However, even in the worst case where all writes

are non-nilext, SKYROS does not perform worse than Paxos.

As noted earlier, in many deployments, the fraction of non-

nilext writes is low and thus SKYROS would offer benefit; for

example, with 10% non-nilext writes, SKYROS offers ~78%

higher throughput.

Nilext and reads.We next consider a workload with nilext

writes and reads. In SKYROS, if a read accesses a key for

which there are unfinalized updates, the read will incur 2

RTTs. We thus consider two request distributions: uniform

and zipfian. We vary the percentage of writes (W) and show

the mean and p99 latency in Figure 8(b)(ii). In the uniform

case, operations do not often access the same keys and thus

reads rarely incur 2 RTTs. With a lowW, SKYROS offers only

little benefit with mean latency (e.g., 10% lower mean latency

with 10% writes). However, SKYROS reduces p99 latency by

80% because writes are faster and reads rarely incur 2 RTTs.
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With a high W (90%), SKYROS offers significant benefit: it

reduces mean latency by 2.2× and p99 latency by 4.1×.
In the zipfian case, some keys aremore popular than others.

Therefore, reads may often access keys recently modified by

writes. Thus, as shown, p99 latency in SKYROS for zipfian

increases compared to the uniform case. However, not all

reads incur 2 RTTs because of background finalization and

prior reads that force synchronous ordering. Thus, although

the improvements decrease compared to the uniform case,

SKYROS still offers significant benefit over Paxos (e.g., at W

= 90%, mean and p99 latencies in SKYROS are 2× lower).

Writes and reads.We next run a mixed workload with all

three kinds of operations. We vary the write percentage (W)

and fix the non-nilext fraction to be 10% of W. As shown

in Figure 8(b)(iii), with a small fraction of writes, SKYROS

offers little benefit over Paxos because reads take 1 RTT in

both systems. With a higherW, SKYROS offers higher perfor-

mance; for example, with W=90% (9% non-nilext), SKYROS

offers 1.72× higher throughput.

5.3 Microbenchmark: Read Latest
If many reads access recently modified items, then SKYROS

would incur overhead on reads. To show this, we run a work-

load with 50% nilext writes and 50% reads with 10 clients. We

vary the amount of reads that access items that were updated

within three different windows [0-100] us (roughly 1 RTT

on our testbed), [0-200] us (roughly 2 RTTs), and [0-1] ms (a

large window), and measure the average request latency.

Figure 9 shows the result. Intuitively, if no or few reads ac-

cess recently modified items, then performance of SKYROS

would not be affected by reads taking 2 RTTs (leftmost point

of the graph). SKYROS offers ~70% lower latency than Paxos.

As we increase percentage of reads accessing items updated

in the window, more reads incur 2 RTTs and thus the av-

erage latency increases. Moreover, latency increases more

steeply for smaller windows; for example, when all reads go

to items updated in the last 100 us, many reads (~68%) incur

2 RTTs. Again, not all reads incur 2 RTTs because of back-

ground finalization and prior reads to the items that force

synchronous ordering. In common workloads, where reads

do not often access recently written items, SKYROS offers

advantages. For example, with 10% reads accessing items

updated in last 100 us, SKYROS offers 70% lower latency.

5.4 Microbenchmark: Latency with Many Replicas
In prior experiments, we use five replicas and thus clients

wait for four responses. With larger clusters, SKYROS clients

must wait for many responses (e.g., seven responses with

nine replicas), potentially increasing latency. To examine

this, we conduct an experiment with seven and nine replicas

and measure the latencies for a nilext-only workload with 10

clients. As shown in Figure 10, the additional responses do

not addmuch to the latencies; latencies in the seven and nine-

node configurations are similar to that of the five-replica case

(about 110𝜇s) and is about 2× lower than Paxos.

Microbenchmark Summary. SKYROS offers benefit under

many workloads with different request ratios and distribu-

tions. Even when pushed to extreme cases (e.g., all non-nilext

or all reads access recent writes), SKYROS does not perform

worse than Paxos. Under realistic workloads, SKYROS offers

higher throughput, and lower mean and tail latencies.

5.5 YCSB Macrobenchmark
We next analyze performance under six ycsb [16] workloads:

Load (write-only), A (50% w, 50% r), B (5% w, 95% r), C (read-

only), D (5% w, 95% r), and F (50% rmw, 50% r). Figure 11(a)

shows the result for 10 clients. For write-heavy workloads

(load, A, and F), SKYROS improves throughput by 1.43× to
2.29×. SKYROS offers similar performance for the read-only

workload. For read-heavy workloads (B and D), SKYROS

offers little benefit; only 5% of operations can be made faster.

To understand the effect of reads that trigger synchro-

nous ordering, we examine the read-latency distributions

(Figure 11(b) and (d)). In both ycsb-a and ycsb-b, most reads
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complete in 1 RTT, while some incur overhead. However, this

fraction is very small (e.g., 4% in ycsb-a and 0.3% in ycsb-b;

we see similar fractions for other workloads too). However,

the slow reads do not affect the overall p99 latency. In fact,

examining the distribution of operation (both read and write)

latencies shows that SKYROS reduces the overall p99 latency.

This reduction arises because the tail in the overall workload

includes expensive writes in Paxos, which SKYROS makes

faster. As a result, SKYROS reduces overall p99 latency by

1.7× in ycsb-a and ycsb-b as shown in Figure 11(c) and (e).

Latency Benefits. For a fixed number of clients as in the

previous experiment, SKYROS offers higher throughput than

Paxos. This is because, in baseline Paxos, the leader waits for

requests to be ordered in 2-RTTs. While SKYROS defers this

ordering work, it does not avoid it. However, by moving the

ordering-wait in Paxos to the background, SKYROS is able to

use the otherwise idle CPU cycles to accept more requests;

this enables SKYROS to achieve higher throughput.

Paxos, with batching across many clients, can achieve

high throughput levels (similar to SKYROS). However, at

such high throughput, SKYROS offers significant latency

benefits. To illustrate this, we measure the average latency at

the maximum throughput obtained by Paxos for write-heavy

(ycsb-a,f) and read-heavy (ycsb-b,d) workloads. As shown in

Figure 12, SKYROS offers 1.32×–2.14× lower latencies than

Paxos for the same throughput.

5.6 Replicated RocksDB: Paxos vs. SKYROS

We have also integrated RocksDB with SKYROS. We built a

wrapper around RocksDB in which we implemented the up-

calls. Figure 13 compares the performance under two work-

loads when using SKYROS and Paxos to replicate RocksDB.

As before, SKYROS offers notable improvements.

5.7 Comparison to Commutative Protocols
We now compare SKYROS to commutative protocols. We

compare against Curp [64], a recent protocol that improves

over prior commutative protocols. Curp targets primary-

backup, but sketches the protocol for consensus [64, §Appendix-

B.2]. In this protocol, a client sends an update𝑢 to all replicas;

each replica adds 𝑢 to a witness component if 𝑢 commutes

with prior operations in the witness. The leader adds𝑢 to the

log, executes 𝑢 speculatively, and returns a response. Clients

wait for a supermajority responses (including the leader’s

result). If the leader detects a conflict, it initiates a sync, finish-
ing the operation in 2 RTT. If a conflict arises at the followers,

the client detects that and informs the leader to initiate a

sync; such requests take 3 RTTs. Reads are sent only to the

leader and thus would incur only 2 RTT upon conflicts. We

implement this protocol and call our implementation Curp-c.

5.7.1 Benefits over Commutative Protocols. We first

compare SKYROS and Curp-c under a write-only key-value

workload (only set). Figure 14(a) shows the result. In the no-

conflict case (no two writes access the same key), Curp-c and

SKYROS perform similarly and are 2× faster than Paxos. In

Curp-c, all requests take 1 RTT because no request conflicts

with another. In SKYROS, all operations are nilext and so

complete in 1 RTT. However, for a zipfian workload (𝜃 = 0.99,

the default in YCSB), Curp-c’s performance drops due to

conflicts, while SKYROS maintains the high performance. In

this case, SKYROS offers 2.7× lower p99 latency than Curp-c.

We next run ycsb-a (50%w, 50%r). As shown in Figure 14(b),

Paxos reads take 1 RTT. In SKYROS, a small fraction of reads

take 2 RTTs. A similar fraction of reads in Curp-c also con-

flict with prior writes and thus incur 2 RTTs. As shown in

Figure 14(c), nilext writes in SKYROS can always complete in

1 RTT. In contrast, in Curp-c, writes conflict with prior writes

and thus sometimes incur 2 or 3 RTTs. As a result, SKYROS

offers 34% lower p99 latency. We observe that write-write

conflicts in Curp-c lead to 50% more slow-path operations

than read-write conflicts in SKYROS and Curp-c. A write-

write conflict can arise due to unsynced operations on any

replica, whereas a read-write conflict can occur only at the

leader. Further, the followers’ knowledge of synced opera-

tions is behind the leader by a message delay, increasing the

conflict window at the followers.
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Exploiting nil-externality offers benefit over commutativ-

ity when operations do not commute. To show this, we built

a file store that supports GFS-style record appends [32]. The

record-append interface is not commutative: records must

be appended in the same order across replicas. However, it is

nilext: it just returns a success. Figure 14(d) shows the result
when four clients append records to a file. Because every

operation conflicts, Curp-c’s performance drops; it is lower

than Paxos because some requests take 3 RTTs. SKYROS

offers 2× higher throughput than Paxos and Curp-c.

5.7.2 AugmentingwithCommutativity. While SKYROS

offers performance advantages over Curp-c in many cases,

non-nilext updates can reduce the performance of SKYROS.

Curp-c can complete such operations in 1 RTT (when they do

not conflict). Figure 14(e)-no-conflict case shows this: with

10% non-nilext writes, Curp-c performs better than SKYROS.

Fortunately, however, nil-externality is compatible with

commutativity.We build SKYROS-COMM, a variant of SKYROS

that exploits commutativity to speed up non-nilext opera-

tions. SKYROS-COMM handles nilext writes and reads in the

same way as SKYROS. However, non-nilext writes are han-

dled similar to Curp-c. Upon a non-nilext write, a replica

checks for conflicts with the pending nilext and non-nilext

writes. If there are none, similar to curp-c, the replicas add

this operation to their durability logs. Since non-nilext oper-

ations expose state, the leader also executes the operation

and returns the result. Clients wait for supermajority re-

sponses including the execution result from the leader and

acknowledgments from other replicas. Similar to SKYROS,

these responses must be from the same view.

SKYROS-COMM handles non-nilext-write conflicts in 2 or

3 RTTs. A conflicting non-nilext write at the leader is treated

similar to a read that accesses a pending update, finishing

the operation in 2 RTTs. If the conflict does not arise at the

leader but at the followers, the client detects the conflict and

resends the request to the leader. The leader then enforces

order by committing the request (and prior ones) to other

replicas, finishing the operation in a total of 3 RTTs. Note

that SKYROS-COMM does not check for conflicts for nilext

writes because they are ordered and executed only lazily.

The last bar in Figure 14(e)-no-conflict case shows that

SKYROS-COMM matches Curp-c’s performance because it

commits non-nilext writes faster than SKYROS. Figure 14(e)-

zipfian case shows that Curp-c’s performance reduces due to

conflicts. SKYROS performs similar to Curp-c because of the

10% non-nilext writes. SKYROS-COMM, however, improves

performance over SKYROS and Curp-c by combining the

advantages of nil-externality and commutativity.

6 Discussion
In this paper, we exploit nilext interfaces in the context of

leader-based replication for key-value stores. Further, our

evaluation focused on single-datacenter settings. However,

the general idea of exploiting nil-externality can be applied in

other contexts as well. We discuss such possible extensions.

BeyondKey-value Stores.Key-value stores (especially ones
built atop write-optimized structures) have many nilext in-

terfaces, enabling fast replication. Nil-externality can be ex-

ploited to perform fast replication for other systems such as

databases and file systems as well. As an example, consider

the POSIX file API. Writes in POSIX (i.e., the write system
call, and variants like pwrite and O_APPEND writes) are

nilext because they do not externalize state, barring cata-

strophic I/O errors (e.g., due to a bad disk). Writes can thus

be replicated performantly. Further, some file systems have

been built upon write-optimized structures [26, 39], making

most file-system operations nilext by design. A nilext-aware

protocol can enable fast replication for such file systems.

Leaderless Protocols. SKYROS is a leader-based protocol.

The leader can become a performance bottleneck in such

leader-based protocols. Also, clients cannot make progress

when the leader fails (before a new leader is chosen). Lead-

erless protocols [54, 58] allow any replica to accept requests,

leading to better performance and availability. The idea of

exploiting nil-externality can be applied to such leaderless

protocols as well. Leaderless protocols such as EPaxos [58]

exploit commutativity to commit requests in one WAN RTT

in geo-replicated settings. However, conflicting writes incur

additional roundtrips. Such a protocol can be augmented to

exploit nil-externality to avoid resolving conflicts on nilext

writes and do so only on non-nilext writes or reads.

Multi Datacenter Settings. Unlike protocols designed for

the data center [50, 67], SKYROS is applicable to geo-replicated

settings as well. By avoiding one WAN RTT, SKYROS can re-

duce latency for nilext operations significantly. However, in
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some scenarios, SKYROS may lead to higher latencies than a

traditional 2-RTT protocol. In particular, when a majority of

the replicas (but not a supermajority) are in the same region

as the client, committing to a majority in two RTTs might

be cheaper than committing to a supermajority in one RTT.

While such a deployment is not commonly used (for fault tol-

erance reasons), when it is, SKYROS could be modified to fall

back to the “slow” 2-RTT protocol based on measurements

(similar to recent systems [78]).

7 Related Work
Commit Before Externalize. Our idea of deferring work

until externalization bears similarity to prior systems. Xsyncfs

defers disk I/O until output is externalized [60], essentially

moving the output commit [25, 72] to clients. SpecPaxos [67],

Zyzzyva [42], and SpecBFT [77] do the same for replication.

As discussed in §3.4.1, these protocols execute requests in

the correct order before notifying the end application. Our

approach, in contrast, defers ordering or executing nilext

operations beyond notifying the end application.

State modified by nilext updates can be externalized by

later non-nilext operations uponwhich SKYROS enforces the

required ordering and execution. Occult [56] and CAD [31]

use a similar idea at a high-level. Occult defers enforcing

causal consistency uponwrites and does so only when clients

read data. Similarly, CAD does not guarantee durability when

writes complete; writes are made durable only upon sub-

sequent reads [31]. However, these systems do not offer

linearizability unlike SKYROS. Further, these systems defer

work on all updates unlike our work which defers work

based on whether or not the write is nilext. Prior work in

unreplicated databases [30] realizes that some transactions

only return an abort or commit and thus can be evaluated

lazily, improving performance. Our work focuses on repli-

cated storage and identifies a general interface-level property

that allows deferring ordering and execution.

Exploiting Semantics. Inconsistent replication (IR) [80] re-

alizes that inconsistent operations only require durability,

and thus can be completed in 1 RTT. Nilext operations, in

contrast, require durability and ordering. Further, IR cannot

support general state machines. Prior replication [45, 58, 64]

and transaction protocols [59] use commutativity to improve

performance. Nil-externality has advantages over and com-

bines well with commutativity (§5.7). SKYROS’s use of DAG

to resolve real-time order has a similar flavor to commutative

protocols [58, 59]). However, these protocols resolve order

in the common-case before execution; SKYROS needs such a

step only during view changes. Gemini [49] and Pileus [43]

realize that some operations need only weak consistency

and perform these operations faster; we focus on realizing

strong consistency with high performance.

SMR Optimizations. Apart from the approaches in §3.4.1,

prior systems have pushed consensus into the network [20,

21]. Domino uses a predictive approach to reduce latency

in WAN [78] and allows clients to choose between Multi-

Paxos and Fast-Paxos schemes. As discussed in §6, ideas

from Domino can be utilized in SKYROS to fall back to a

2-RTT path in geo-replicated scenarios where a single RTT

to a supermajority is more expensive than two RTTs to a

majority. Prior work has also proposed other techniques to

realize high performance in multi-core servers [34, 40], by

enabling quorum reads [12], and by partitioning state [47].

Such optimizations could also benefit SKYROS.

Local Storage Techniques. Techniques in SKYROS bear

similarities to database write-ahead logging (WAL) [57] and

file-system journaling [35]. However, our techniques differ

in important aspects. While WAL and journaling do enable

delaying writes to final on-disk pages, the writes are still

applied to in-memory pages before responding to clients.

Further, background disk writes are not triggered by external-

izing operations but rather occur asynchronously; externaliz-

ing operations can proceed by accessing the in-memory state.

In contrast, SKYROS defers applying updates altogether until

externalization. While both WAL and the durability log in

SKYROS ensure durability, WAL also imposes an order of

transactions. Group commit [23, 35] batches several updates

to amortize disk-access costs; Multi-Paxos and SKYROS sim-

ilarly use batching at the leader to amortize cost.

8 Conclusion
In this paper, we identify nil-externality, a storage-interface

property, and show that this property is prevalent in storage

systems. We design nilext-aware replication, a new approach

to replication that takes advantage of nilext interfaces to im-

prove performance by lazily ordering and executing updates.

We experimentally demonstrate that nilext-aware replication

improves performance over existing approaches for a range

of workloads. More broadly, our work shows that exposing

and exploiting properties across layers of a storage system

can bring significant performance benefit. Storage systems,

today, layer existing replication protocols upon local storage

systems (such as key-value stores). Such black-box layer-

ing masks vital information across these layers, resulting in

missed performance opportunities. This paper shows that by

making the replication layer aware of the underlying storage-

interface properties, higher performance can be realized.

The source code of SKYROS and our experimental artifacts

are available at https://bitbucket.org/aganesan4/skyros/.
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