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Abstract
Distributed systems are easier to build than ever with the
emergence of new, data-centric abstractions for storing
and computing over massive datasets. However, similar
abstractions do not exist for storing and accessing meta-
data. To fill this gap, Tango provides developers with
the abstraction of a replicated, in-memory data struc-
ture (such as a map or a tree) backed by a shared log.
Tango objects are easy to build and use, replicating state
via simple append and read operations on the shared
log instead of complex distributed protocols; in the pro-
cess, they obtain properties such as linearizability, per-
sistence and high availability from the shared log. Tango
also leverages the shared log to enable fast transactions
across different objects, allowing applications to parti-
tion state across machines and scale to the limits of the
underlying log without sacrificing consistency.

1 Introduction
Cloud platforms have democratized the development of
scalable applications in recent years by providing sim-
ple, data-centric interfaces for partitioned storage (such
as Amazon S3 [1] or Azure Blob Store [8]) and par-
allelizable computation (such as MapReduce [19] and
Dryad [28]). Developers can use these abstractions to
easily build certain classes of large-scale applications –
such as user-facing Internet services or back-end ma-
chine learning algorithms – without having to reason
about the underlying distributed machinery.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, PA, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522732

However, current cloud platforms provide applica-
tions with little support for storing and accessing meta-
data. Application metadata typically exists in the form
of data structures such as maps, trees, counters, queues,
or graphs; real-world examples include filesystem hier-
archies [5], resource allocation tables [7], job assign-
ments [3], network topologies [35], deduplication in-
dices [20] and provenance graphs [36]. Updates to meta-
data usually consist of multi-operation transactions that
span different data structures – or arbitrary subsets of
a single data structure – while requiring atomicity and
isolation; for example, moving a node from a free list
to an allocation table, or moving a file from one portion
of a namespace to another. At the same time, application
metadata is required to be highly available and persistent
in the face of faults.

Existing solutions for storing metadata do not provide
transactional access to arbitrary data structures with per-
sistence and high availability. Cloud storage services
(e.g., SimpleDB [2]) and coordination services (e.g.,
ZooKeeper [27] and Chubby [14]) provide persistence,
high availability, and strong consistency. However, each
system does so for a specific data structure, and with
limited or no support for transactions that span multi-
ple operations, items, or data structures. Conventional
databases support transactions, but with limited scala-
bility and not over arbitrary data structures.

In this paper, we introduce Tango, a system for build-
ing highly available metadata services where the key ab-
straction is a Tango object, a class of in-memory data
structures built over a durable, fault-tolerant shared log.
As shown in Figure 1, the state of a Tango object exists
in two forms: a history, which is an ordered sequence of
updates stored durably in the shared log, and any number
of views, which are full or partial copies of the data struc-
ture in its conventional form – such as a tree or a map –
stored in RAM on clients (i.e., application servers). In
Tango, the shared log is the object; views constitute soft
state and are instantiated, reconstructed, and updated on
clients as required by playing the shared history forward.
A client modifies a Tango object by appending a new
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Figure 1: A Tango object is a replicated in-memory
data structure layered over a persistent shared log.

update to the history; it accesses the object by first syn-
chronizing its local view with the history.

Tango objects simplify the construction of metadata
services by delegating key pieces of functionality to the
underlying shared log. First, the shared log is the source
of consistency for the Tango object: clients implement
state machine replication by funneling writes through
the shared history and synchronizing with it on reads,
providing linearizability for single operations. Second,
the shared log is the source of durability: clients can re-
cover views after crashes simply by playing back the his-
tory stored in the shared log. In addition, views can con-
tain pointers to data stored in the shared log, effectively
acting as indices over log-structured storage. Third, the
shared log is the source of history: clients can access
previous states of the Tango object by instantiating a new
view from a prefix of the history. Finally, the shared log
enables elasticity: the aggregate throughput of lineariz-
able reads to the Tango object can be scaled simply by
adding new views, without slowing down write through-
put. In extracting these properties from a shared log,
Tango objects can be viewed as a synthesis of state ma-
chine replication [42], log-structured storage [39], and
history-based systems [21].

In addition, Tango provides atomicity and isolation

for transactions across different objects by storing them
on a single shared log. These objects can be different
components of the same application (e.g., a scheduler
using a free list and an allocation table), different shards
of the application (e.g., multiple subtrees of a filesystem
namespace), or even components shared across applica-
tions (e.g., different job schedulers accessing the same
free list). In all these use cases, the shared log estab-
lishes a global order across all updates, efficiently en-

abling transactions as well as other strongly consistent
multi-object operations such as atomic updates, consis-
tent snapshots, coordinated rollback, and consistent re-
mote mirroring. Tango implements these operations by
manipulating the shared log in simple ways, obviating
the need for the complex distributed protocols typically
associated with such functionality. Multiplexing Tango
objects on a single shared log also simplifies deploy-
ment; new applications can be instantiated just by run-
ning new client-side code against the shared log, without
requiring application-specific back-end servers.

The Tango design is enabled by the existence of fast,
decentralized shared log implementations that can scale
to millions of appends and reads per second; our imple-
mentation runs over a modified version of CORFU [10],
a recently proposed protocol that utilizes a cluster of
flash drives for this purpose. However, a key challenge
for Tango is the playback bottleneck: even with an in-
finitely scalable shared log, any single client in the sys-
tem can only consume the log – i.e., learn the total order-
ing – at the speed of its local NIC. In other words, a set
of clients can extend Tango object histories at aggregate
speeds of millions of appends per second, but each client
can only read back and apply those updates to its local
views at tens of thousands of operations per second.

To tackle the playback bottleneck, Tango implements
a stream abstraction over the shared log. A stream pro-
vides a readnext interface over the address space of
the shared log, allowing clients to selectively learn or
consume the subsequence of updates that concern them
while skipping over those that do not. Each Tango ob-
ject is stored on its own stream; to instantiate the view
for a Tango object, a client simply plays the associated
stream. The result is layered partitioning, where an ap-
plication can shard its state into multiple Tango objects,
each instantiated on a different client, allowing the ag-
gregate throughput of the system to scale until the un-
derlying shared log is saturated. The global ordering
imposed by the shared log enables fast cross-partition
transactions, ensuring that the scaling benefit of layered
partitioning does not come at the cost of consistency.

Tango is built in C++ with bindings for Java and C#
applications. We’ve built a number of useful data struc-
tures with Tango, including ZooKeeper (TangoZK, 1K
lines), BookKeeper (TangoBK, 300 lines), and imple-
mentations of the Java and C# Collections interfaces
such as TreeSets and HashMaps (100 to 300 lines each).
Our implementations of these interfaces are persistent,
highly available, and elastic, providing linear scaling for
linearizable reads against a fixed write load. Addition-
ally, they support fast transactions within and across data
structures; for example, applications can transactionally
delete a TangoZK node while creating an entry in a Tan-
goMap. Finally, we ran the HDFS namenode over the









Tango variants of ZooKeeper and BookKeeper, showing
that our implementations offer full fidelity to the origi-
nals despite requiring an order of magnitude less code.

We make two contributions in this paper:

• We describe Tango, a system that provides appli-
cations with the novel abstraction of an in-memory
data structure backed by a shared log. We show
that Tango objects can achieve properties such as
persistence, strong consistency, and high availabil-
ity in tens of lines of code via the shared log, with-
out requiring complex distributed protocols (Sec-
tion 3). In our evaluation, a single Tango object
running on 18 clients provides 180K linearizable
reads/sec against a 10K/sec write load.

• We show that storing multiple Tango objects on the
same shared log enables simple, efficient transac-
tional techniques across objects (Section 4). To im-
plement these techniques efficiently, we present a
streaming interface that allows each object to se-
lectively consume a subsequence of the shared log
(Section 5). In our evaluation, a set of Tango ob-
jects runs at over 100K txes/sec when 16% of trans-
actions span objects on different clients.

2 Background
In practice, metadata services are often implemented as
centralized servers; high availability is typically a sec-
ondary goal to functionality. When the time comes to
‘harden’ these services, developers are faced with three
choices. First, they can roll out their own custom fault-
tolerance protocols; this is expensive, time-consuming,
and difficult to get right. Second, they can implement
state machine replication over a consensus protocol such
as Paxos [31]; however, this requires the service to be
structured as a state machine with all updates flowing
through the Paxos engine, which often requires a drastic
rewrite of the code.

The third option is to use an existing highly avail-
able data structure such as ZooKeeper, which provides
a hierarchical namespace as an external service. How-
ever, such an approach forces developers to use a par-
ticular data structure (in the case of ZooKeeper, a tree)
to store all critical application state, instead of allow-
ing them to choose one or more data structures that
best fit their needs (as an analogy, imagine if the C++
STL provided just a hash map, or Java Collections came
with just a TreeSet!). This is particularly problem-
atic for high-performance metadata services which use
highly tuned data structures tailored for specific work-
loads. For example, a membership service that stores
server names in ZooKeeper would find it inefficient to

implement common functionality such as searching the
namespace on some index (e.g., CPU load), extracting
the oldest/newest inserted name, or storing multi-MB
logs per name.

In practice, developers are forced to cobble together
various services, each solving part of the problem; for
example, one of the existing, in-progress proposals for
adding high availability to the HDFS namenode (i.e.,
metadata server) uses a combination of ZooKeeper,
BookKeeper [30], and its own custom protocols [4].
Such an approach produces fragile systems that depend
on multiple other systems, each with its own complex
protocols and idiosyncratic failure modes. Often these
underlying protocols are repetitive, re-implementing
consensus and persistence in slightly different ways.
The result is also a deployment nightmare, requiring
multiple distributed systems to be independently config-
ured and provisioned.

Can we provide developers with a wide range of data
structures that are strongly consistent, persistent, and
highly available, while using a single underlying ab-
straction? Importantly, can we make the development
of such a data structure easy enough that developers can
write new, application-specific data structures in tens of
lines of code? The answer to these questions lies in the
shared log abstraction.

2.1 The Shared Log Abstraction

Shared logs were first used in QuickSilver [25, 41]
and Camelot [43] in the late 80s to implement fault-
tolerance; since then, they have played roles such as
packet recovery [26] and remote mirroring [29] in var-
ious distributed systems. Two problems have hampered
the adoption of the shared log as a mainstream abstrac-
tion. First, any shared log implementation is subject to a
highly random read workload, since the body of the log
can be concurrently accessed by many clients over the
network. If the underlying storage media is disk, these
randomized reads can slow down other reads as well as
reduce the append throughput of the log to a trickle. As
Bernstein et al. observe [11], this concern has largely
vanished with the advent of flash drives that can support
thousands of concurrent read and write IOPS.

The second problem with the shared log abstraction
relates to scalability; existing implementations typically
require appends to the log to be serialized through a pri-
mary server, effectively limiting the append throughput
of the log to the I/O bandwidth of a single machine.
This problem is eliminated by the CORFU protocol [10],
which scales the append throughput of the log to the
speed at which a centralized sequencer can hand out new
offsets in the log to clients.
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Figure 2: A centralized sequencer can scale to more
than half a million operations/sec.

2.2 The CORFU Shared Log
The CORFU interface is simple, consisting of four ba-
sic calls. Clients can append entries to the shared log,
obtaining an offset in return. They can check the current
tail of the log. They can read the entry at a particular off-
set. The system provides linearizable semantics: a read
or a check is guaranteed to see any completed append
operations. Finally, clients can trim a particular offset in
the log, indicating that it can be garbage collected.

Internally, CORFU organizes a cluster of storage
nodes into multiple, disjoint replica sets; for example,
a 12-node cluster might consist of 4 replica sets of size
3. Each individual storage node exposes a 64-bit write-
once address space, mirrored across the replica set. Ad-
ditionally, the cluster contains a dedicated sequencer
node, which is essentially a networked counter storing
the current tail of the shared log.

To append to the shared log, a client first contacts the
sequencer and obtains the next free offset in the global
address space of the shared log. It then maps this offset
to a local offset on one of the replica sets using a simple
deterministic mapping over the membership of the clus-
ter. For example, offset 0 might be mapped to A : 0 (i.e.,
page 0 on set A, which in turn consists of storage nodes
A0, A1, and A2), offset 1 to B : 0, and so on until the func-
tion wraps back to A : 1. The client then completes the
append by directly issuing writes to the storage nodes
in the replica set using a client-driven variant of Chain
Replication [45].

Reads to an offset follow a similar process, minus
the offset acquisition from the sequencer. Checking
the tail of the log comes in two variants: a fast check
(sub-millisecond) that contacts the sequencer, and a slow
check (10s of milliseconds) that queries the storage
nodes for their local tails and inverts the mapping func-
tion to obtain the global tail.

The CORFU design has some important properties:

The sequencer is not a single point of failure. The
sequencer stores a small amount of soft state: a single
64-bit integer representing the tail of the log. When the
sequencer goes down, any client can easily recover this
state using the slow check operation. In addition, the se-
quencer is merely an optimization to find the tail of the
log and not required for correctness; the Chain Replica-
tion variant used to write to the storage nodes guarantees
that a single client will ‘win’ if multiple clients attempt
to write to the same offset. As a result, the system can
tolerate the existence of multiple sequencers, and can
run without a sequencer (at much reduced throughput)
by having clients probe for the location of the tail. A
different failure mode involves clients crashing after ob-
taining offsets but before writing to the storage nodes,
creating ‘holes’ in the log; to handle this case, CORFU
provides applications with a fast, sub-millisecond fill
primitive as described in [10] .

The sequencer is not a bottleneck for small clusters.
In prior work on CORFU [10], we reported a user-space
sequencer that ran at 200K appends/sec. To test the lim-
its of the design, we subsequently built a faster CORFU
sequencer using the new Registered I/O interfaces [9]
in Windows Server 2012. Figure 2 shows the perfor-
mance of the new sequencer: as we add clients to the
system, sequencer throughput increases until it plateaus
at around 570K requests/sec. We obtain this perfor-
mance without any batching (beyond TCP/IP’s default
Nagling); with a batch size of 4, for example, the se-
quencer can run at over 2M requests/sec, but this will
obviously affect the end-to-end latency of appends to
the shared log. Our finding that a centralized server
can be made to run at very high RPC rates matches re-
cent observations by others; the Percolator system [38],
for example, runs a centralized timestamp oracle with
similar functionality at over 2M requests/sec with batch-
ing; Vasudevan et al. [46] report achieving 1.6M sub-
millisecond 4-byte reads/sec on a single server with
batching; Masstree [33] is a key-value server that pro-
vides 6M queries/sec with batching.

Garbage collection is a red herring. System designers
tend to view log-structured designs with suspicion, con-
ditioned by decades of experience with garbage collec-
tion over hard drives. However, flash storage has sparked
a recent resurgence in log-structured designs, due to the
ability of the medium to provide contention-free random
reads (and its need for sequential writes); every SSD on
the market today traces its lineage to the original LFS
design [39], implementing a log-structured storage sys-
tem that can provide thousands of IOPS despite con-
current GC activity. In this context, a single CORFU
storage node is an SSD with a custom interface (i.e.,
a write-once, 64-bit address space instead of a conven-
tional LBA, where space is freed by explicit trims rather



than overwrites). Accordingly, its performance and en-
durance levels are similar to any commodity SSD. As
with any commodity SSD, the flash lifetime of a CORFU
node depends on the workload; sequential trims result in
substantially less wear on the flash than random trims.

Finally, while the CORFU prototype we use works
over commodity SSDs, the abstract design can work
over any form of non-volatile RAM (including battery-
backed DRAM and Phase Change Memory). The size of
a single entry in the log (which has to be constant across
entries) can be selected at deployment time to suit the
underlying medium (e.g., 128 bytes for DRAM, or 4KB
for NAND flash).

3 The Tango Architecture
A Tango application is typically a service running in a
cloud environment as a part of a larger distributed sys-
tem, managing metadata such as indices, namespaces,
membership, locks, or resource lists. Application code
executes on clients (which are compute nodes or appli-
cation servers in a data center) and manipulates data
stored in Tango objects, typically in response to net-
worked requests from machines belonging to other ser-
vices and subsystems. The local view of the object on
each client interacts with a Tango runtime, which in turn
provides persistence and consistency by issuing appends
and reads to an underlying shared log. Importantly,
Tango runtimes on different machines do not communi-
cate with each other directly through message-passing;
all interaction occurs via the shared log. Applications
can use a standard set of objects provided by Tango,
providing interfaces similar to the Java Collections li-
brary or the C++ STL; alternatively, application devel-
opers can roll their own Tango objects.

3.1 Anatomy of a Tango Object
As described earlier, a Tango object is a replicated in-
memory data structure backed by a shared log. The
Tango runtime simplifies the construction of such an ob-
ject by providing the following API:

• update helper: this accepts an opaque buffer from
the object and appends it to the shared log.

• query helper: this reads new entries from the
shared log and provides them to the object via an
apply upcall.

The code for the Tango object itself has three main
components. First, it contains the view, which is an in-
memory representation of the object in some form, such
as a list or a map; in the example of a TangoRegister
shown in Figure 3, this state is a single integer. Second,

c l a s s T a n g o R e g i s t e r {
i n t o i d ;
TangoRuntime ⇤T ;
i n t s t a t e ;
vo id apply ( vo id ⇤X) {

s t a t e = ⇤ ( i n t ⇤ )X;
}
vo id w r i t e R e g i s t e r ( i n t n e w s t a t e ){

T�>u p d a t e h e l p e r (& n e w s t a t e ,
s i z e o f ( i n t ) , o i d ) ;

}
i n t r e a d R e g i s t e r ( ) {

T�>query he lper ( o i d ) ;
r e t u r n s t a t e ;

}
}

Figure 3: TangoRegister: a linearizable, highly avail-
able and persistent register. Tango functions/upcalls
in bold.

it implements the mandatory apply upcall which changes
the view when the Tango runtime calls it with new en-
tries from the log. The view must be modified only by
the Tango runtime via this apply upcall, and not by appli-
cation threads executing arbitrary methods of the object.

Finally, each object exposes an external interface con-
sisting of object-specific mutator and accessor meth-
ods; for example, a TangoMap might expose get/put
methods, while the TangoRegister in Figure 3 exposes
read/write methods. The object’s mutators do not di-
rectly change the in-memory state of the object, nor do
the accessors immediately read its state. Instead, each
mutator coalesces its parameters into an opaque buffer –
an update record – and calls the update helper function
of the Tango runtime, which appends it to the shared
log. Each accessor first calls query helper before re-
turning an arbitrary function over the state of the object;
within the Tango runtime, query helper plays new up-
date records in the shared log until its current tail and
applies them to the object via the apply upcall before
returning.

We now explain how this simple design extracts im-
portant properties from the underlying shared log.

Consistency: Based on our description thus far, a
Tango object is indistinguishable from a conventional
SMR (state machine replication) object. As in SMR,
different views of the object derive consistency by fun-
neling all updates through a total ordering engine (in our
case, the shared log). As in SMR, strongly consistent ac-
cessors are implemented by first placing a marker at the
current position in the total order and then ensuring that
the view has seen all updates until that marker. In con-
ventional SMR this is usually done by injecting a read



operation into the total order, or by directing the read re-
quest through the leader [13]; in our case we leverage the
check function of the log. Accordingly, a Tango object
with multiple views on different machines provides lin-
earizable semantics for invocations of its mutators and
accessors.

Durability: A Tango object is trivially persistent; the
state of the object can be reconstructed by simply creat-
ing a new instance and calling query helper on Tango.
A more subtle point is that the in-memory data struc-
ture of the object can contain pointers to values stored
in the shared log, effectively turning the data structure
into an index over log-structured storage. To facilitate
this, each Tango object is given direct, read-only access
to its underlying shared log, and the apply upcall op-
tionally provides the offset in the log of the new update.
For example, a TangoMap can update its internal hash-
map with the offset rather than the value on each apply
upcall; on a subsequent get, it can consult the hash-map
to locate the offset and then directly issue a random read
to the shared log.

History: Since all updates are stored in the shared
log, the state of the object can be rolled back to any
point in its history simply by creating a new instance and
syncing with the appropriate prefix of the log. To enable
this, the Tango query helper interface takes an optional
parameter that specifies the offset at which to stop sync-
ing. To optimize this process in cases where the view
is small (e.g., a single integer in TangoRegister), the
Tango object can create checkpoints and provide them
to Tango via a checkpoint call. Internally, Tango stores
these checkpoints on the shared log and accesses them
when required on query helper calls. Additionally, the
object can forgo the ability to roll back (or index into the
log) before a checkpoint with a forget call, which allows
Tango to trim the log and reclaim storage capacity.

The Tango design enables other useful properties.
Strongly consistent reads can be scaled simply by instan-
tiating more views of the object on new clients. More
reads translate into more check and read operations on
the shared log, and scale linearly until the log is sat-
urated. Additionally, objects with different in-memory
data structures can share the same data on the log. For
example, a namespace can be represented by different
trees, one ordered on the filename and the other on a di-
rectory hierarchy, allowing applications to perform two
types of queries efficiently (i.e., “list all files starting
with the letter B” vs. “list all files in this directory”).

3.2 Multiple Objects in Tango
We now substantiate our earlier claim that storing multi-
ple objects on a single shared log enables strongly con-
sistent operations across them without requiring com-

plex distributed protocols. The Tango runtime on each
client can multiplex the log across objects by storing and
checking a unique object ID (OID) on each entry; such
a scheme has the drawback that every client has to play
every entry in the shared log. For now, we make the as-
sumption that each client hosts views for all objects in
the system. Later in the paper, we describe layered par-
titioning, which enables strongly consistent operations
across objects without requiring each object to be hosted
by each client, and without requiring each client to con-
sume the entire shared log.

Many strongly consistent operations that are difficult
to achieve in conventional distributed systems are triv-
ial over a shared log. Applications can perform coordi-
nated rollbacks or take consistent snapshots across many
objects simply by creating views of each object synced
up to the same offset in the shared log. This can be a
key capability if a system has to be restored to an ear-
lier state after a cascading corruption event. Another
trivially achieved capability is remote mirroring; appli-
cation state can be asynchronously mirrored to remote
data centers by having a process at the remote site play
the log and copy its contents. Since log order is main-
tained, the mirror is guaranteed to represent a consistent,
system-wide snapshot of the primary at some point in the
past. In Tango, all these operations are implemented via
simple appends and reads on the shared log.

Tango goes one step further and leverages the shared
log to provide transactions within and across objects. It
implements optimistic concurrency control by append-
ing speculative transaction commit records to the shared
log. Commit records ensure atomicity, since they deter-
mine a point in the persistent total ordering at which the
changes that occur in a transaction can be made visible
at all clients. To provide isolation, each commit record
contains a read set: a list of objects read by the trans-
action along with their versions, where the version is
simply the last offset in the shared log that modified the
object. A transaction only succeeds if none of its reads
are stale when the commit record is encountered (i.e.,
the objects have not changed since they were read). As a
result, Tango provides the same isolation guarantee as 2-
phase locking, which is at least as strong as strict serial-
izability [12], and is identical to the guarantee provided
by the recent Spanner [18] system.

Figure 4 shows an example of the transactional inter-
face provided by Tango to application developers, where
calls to object accessors and mutators can be bracketed
by BeginT X and EndT X calls. BeginT X creates a trans-
action context in thread-local storage. EndT X appends
a commit record to the shared log, plays the log forward
until the commit point, and then makes a commit/abort
decision. Each client that encounters the commit record
decides – independently but deterministically – whether
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commit record:
reads: (owners#1)
writes: (list#2)

speculative 
update at #2

updates by 
other clients

TX commits if read set has not 
changed in conflict window

TX start pos = #1

Figure 4: Example of a single-writer list built with
transactions over a TangoMap and a TangoList.

it should commit or abort by comparing the versions in
the read set with the current versions of the objects. If
none of the read objects have changed since they were
read, the transaction commits and the objects in the write
set are updated with the apply upcall. In the example
in Figure 4, this happens if the committed transactions
in the conflict window do not modify the ‘owners’ data
structure.

To support transactional access, Tango object code re-
quires absolutely no modification (for example, the Tan-
goRegister code in Figure 3 supports transactions); in-
stead, the Tango runtime merely substitutes different im-
plementations for the update helper and query helper
functions if an operation is running within a transac-
tional context. The update helper call now buffers up-
dates instead of writing them immediately to the shared
log; when a log entry’s worth of updates have been accu-
mulated, it flushes them to the log as speculative writes,
not to be made visible by other clients playing the log
until the commit record is encountered. The EndTX
call flushes any buffered updates to the shared log be-
fore appending the commit record to make them visible.
Correspondingly, the query helper call does not play the
log forward when invoked in a transactional context; in-
stead, it updates the read set of the transaction with the
OID of the object and its current version.

Naming: To assign unique OIDs to each ob-
ject, Tango maintains a directory from human-readable
strings (e.g. “FreeNodeList” or “WidgetAllocation-
Map”) to unique integers. This directory is itself a Tango
object with a hard-coded OID. Tango also uses the direc-
tory for safely implementing the forget garbage collec-
tion interface in the presence of multiple objects; this is
complicated by the fact that entries can contain commit

records impacting multiple objects. The directory tracks
the forget offset for each object (below which its entries
can be reclaimed), and Tango only trims the shared log
below the minimum such offset across all objects.

Versioning: While using a single version number per
object works well for fine-grained objects such as reg-
isters or counters, it can result in an unnecessarily high
abort rate for large data structures such as maps, trees
or tables, where transactions should ideally be allowed
to concurrently modify unrelated parts of the data struc-
ture. Accordingly, objects can optionally pass in opaque
key parameters to the update helper and query helper
calls, specifying which disjoint sub-region of the data
structure is being accessed and thus allowing for fine-
grained versioning within the object. Internally, Tango
then tracks the latest version of each key within an ob-
ject. For data structures that are not statically divisible
into sub-regions (such as queues or trees), the object can
use its own key scheme and provide upcalls to the Tango
runtime that are invoked to check and update versions.

Read-only transactions: For these, the EndT X call
does not insert a commit record into the shared log; in-
stead, it just plays the log forward until its current tail
before making the commit/abort decision. If there’s no
write activity in the system (and consequently no new
updates to play forward), a read-only transaction only
requires checking the tail of the shared log; in CORFU,
this is a single round-trip to the sequencer. Tango also
supports fast read-only transactions from stale snapshots
by having EndT X make the commit/abort decision lo-
cally, without interacting with the log. Write-only trans-
actions require an append on the shared log but can com-
mit immediately without playing the log forward.

Failure Handing: A notable aspect of Tango ob-
jects (as described thus far) is the simplicity of failure
handling, a direct consequence of using a fault-tolerant
shared log. A Tango client that crashes in the middle
of a transaction can leave behind orphaned data in the
log without a corresponding commit record; other clients
can complete the transaction by inserting a dummy com-
mit record designed to abort. In the context of CORFU,
a crashed Tango client can also leave holes in the shared
log; any client that encounters these uses the CORFU
fill operation on them after a tunable time-out (100ms
by default). Beyond these, the crash of a Tango client
has no unpleasant side-effects.

4 Layered Partitions
In the previous section, we showed how a shared log
enables strongly consistent operations such as transac-
tions across multiple Tango objects. In our description,
we assumed that each client in the system played the
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Figure 5: Use cases for Tango objects: application
state can be distributed in different ways across ob-
jects.

entire shared log, with the Tango runtime multiplexing
the updates in the log across different Tango objects.
Such a design is adequate if every client in the system
hosts a view of every object in the system, which is
the case when the application is a large, fully replicated
service (as in example (a) in Figure 5). For example,
a job scheduling service that runs on multiple applica-
tion servers for high availability can be constructed using
a TangoMap (mapping jobs to compute nodes), a Tan-
goList (storing free compute nodes) and a TangoCounter
(for new job IDs). In this case, each of the application
servers (i.e. Tango clients) runs a full replica of the job
scheduler service and hence needs to access all three ob-
jects. Requiring each node to play back the entire log is
also adequate if different objects share the same history,
as described earlier; in example (b) in Figure 5, a ser-
vice hosts a tree-based map and a hash-based map over
the same data to optimize for specific access patterns.

However, for other use cases, different clients in the
system may want to host views of different subsets of
objects, due to different services or components shar-
ing common state (see example (c) in Figure 5). For
instance, let’s say that the job scheduler above coexists
with a backup service that periodically takes nodes in the
free list offline, backs them up, and then returns them
to the free list. This backup service runs on a different
set of application servers and is composed from a differ-
ent set of Tango objects, but requires access to the same
TangoList as the job scheduler. In this scenario, forc-
ing each application server to play the entire shared log
is wasteful; the backup service does not care about the
state of the objects that compose the job scheduler (other
than the free list), and vice versa. Additionally, different

clients may want to host views of disjoint subsets of ob-
jects (as in example (d) in Figure 5), scaling the system
for operations within a partition while still using the un-
derlying shared log for consistency across partitions.

We call this layered partitioning: each client hosts a
(possibly overlapping) partition of the global state of the
system, but this partitioning scheme is layered over a
single shared log. To efficiently implement layered par-
titions without requiring each client to play the entire
shared log, Tango maps each object to a stream over the
shared log. A stream augments the conventional shared
log interface (append and random read) with a stream-
ing readnext call. Many streams can co-exist on a single
shared log; calling readnext on a stream returns the next
entry belonging to that stream in the shared log, skipping
over entries belonging to other streams. With this inter-
face, clients can selectively consume the shared log by
playing the streams of interest to them (i.e., the streams
of objects hosted by them). Importantly, streams are not
necessarily disjoint; a multiappend call allows a physi-
cal entry in the log to belong to multiple streams, a capa-
bility we use to implement transactions across objects.

Accordingly, each client now plays the streams be-
longing to the objects in its layered partition. How does
this compare with conventionally partitioned or sharded
systems? As in sharding, each client hosting a layered
partition only sees a fraction of the traffic in the sys-
tem, allowing throughput to scale linearly with the num-
ber of partitions (assuming these don’t overlap). Unlike
sharding, applications now have the ability to efficiently
perform strongly consistent operations such as transac-
tions across layered partitions, since the shared log im-
poses a global ordering across partitions. In exchange
for this new capability, there’s now a cap on aggregate
throughput across all partitions; once the shared log is
saturated, adding more layered partitions does not in-
crease throughput.

In the remainder of this section, we describe how
Tango uses streams over a shared log to enable fast trans-
actions without requiring all clients to play the entire log.
In the next section, we describe our implementation of
streams within the CORFU shared log.

4.1 Transactions over Streams
Tango uses streams in an obvious way: each Tango ob-
ject is assigned its own dedicated stream. If transactions
never cross object boundaries, no further changes are re-
quired to the Tango runtime. When transactions cross
object boundaries, Tango changes the behavior of its
EndTX call to multiappend the commit record to all the
streams involved in the write set. This scheme ensures
two important properties required for atomicity and iso-
lation. First, a transaction that affects multiple objects



occupies a single position in the global ordering; in other
words, there is only one commit record per transaction
in the raw shared log. Second, a client hosting an object
sees every transaction that impacts the object, even if it
hosts no other objects.

When a commit record is appended to multiple
streams, each Tango runtime can encounter it multiple
times, once in each stream it plays (under the hood, the
streaming layer fetches the entry once from the shared
log and caches it). The first time it encounters the record
at a position X, it plays all the streams involved until po-
sition X, ensuring that it has a consistent snapshot of all
the objects touched by the transaction as of X. It then
checks for read conflicts (as in the single-object case)
and determines the commit/abort decision.

When each client does not host a view for every object
in the system, writes or reads can involve objects that are
not locally hosted at the client that generates the commit
record or the client that encounters it. We examine each
of these cases:

A. Remote writes at the generating client: The gener-
ating client – i.e., the client that executed the transaction
and created the commit record – may want to write to a
remote object (i.e., an object for which it does not host a
local view). This case is easy to handle; as we describe
later, a client does not need to play a stream to append
to it, and hence the generating client can simply append
the commit record to the stream of the remote object.

B. Remote writes at the consuming client: A client
may encounter commit records generated by other
clients that involve writes to objects it does not host; in
this case, it simply updates its local objects while ignor-
ing updates to the remote objects.

Remote-write transactions are an important capabil-
ity. Applications that partition their state across multi-
ple objects can now consistently move items from one
partition to the other. For example, in our implementa-
tion of ZooKeeper as a Tango object, we can partition
the namespace by running multiple instances of the ob-
ject, and move keys from one namespace to the other
using remote-write transactions. Another example is a
producer-consumer queue; with remote-write transac-
tions, the producer can add new items to the queue with-
out having to locally host it and see all its updates.

C. Remote reads at the consuming client: Here, a
client encounters commit records generated by other
clients that involve reads to objects it does not host; in
this case, it does not have the information required to
make a commit/abort decision since it has no local copy
of the object to check the read version against. To re-
solve this problem, we add an extra round to the con-
flict resolution process, as shown in Figure 6. The client
that generates and appends the commit record (App1 in
the figure) immediately plays the log forward until the
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Figure 6: Transactions over streams: decision
records allow clients to learn about a transaction’s
status without hosting its read set.

commit point, makes a commit/abort decision for the
record it just appended, and then appends an extra de-
cision record to the same set of streams. Other clients
that encounter the commit record (App2 in the figure)
but do not have locally hosted copies of the objects in
its read set can now wait for this decision record to ar-
rive. Significantly, the extra phase adds latency to the
transaction but does not increase the abort rate, since the
conflict window for the transaction is still the span in the
shared log between the reads and the commit record.

Concretely, a client executing a transaction must in-
sert a decision record for a transaction if there’s some
other client in the system that hosts an object in its write
set but not all the objects in its read set. In our current
implementation, we require developers to mark objects
as requiring decision records; for example, in Figure 6,
App1 marks object A but not object C. This solution
is simple but conservative and static; a more dynamic
scheme might involve tracking the set of objects hosted
by each client.

D. Remote reads at the generating client: Tango does
not currently allow a client to execute transactions and
generate commit records involving remote reads. Call-
ing an accessor on an object that does not have a local
view is problematic, since the data does not exist locally;
possible solutions involve invoking an RPC to a different
client with a view of the object, if one exists, or recreat-
ing the view locally at the beginning of the transaction,
which can be too expensive. If we do issue RPCs to
other clients, conflict resolution becomes problematic;
the node that generated the commit record does not have
local views of the objects read by it and hence cannot
check their latest versions to find conflicts. As a result,
conflict resolution requires a more complex, collabora-
tive protocol involving multiple clients sharing partial,
local commit/abort decisions via the shared log; we plan
to explore this as future work.

A second limitation is that a single transaction can
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only write to a fixed number of Tango objects. The mul-
tiappend call places a limit on the number of streams to
which a single entry can be appended. As we will see
in the next section, this limit is set at deployment time
and translates to storage overhead within each log entry,
with each extra stream requiring 12 bytes of space in a
4KB log entry.

Failure Handling: The decision record mechanism
described above adds a new failure mode to Tango: a
client can crash after appending a commit record but be-
fore appending the corresponding decision record. A
key point to note, however, is that the extra decision
phase is merely an optimization; the shared log already
contains all the information required to make the com-
mit/abort decision. Any other client that hosts the read
set of the transaction can insert a decision record after a
time-out if it encounters an orphaned commit record. If
no such client exists and a larger time-out expires, any
client in the system can reconstruct local views of each
object in the read set synced up to the commit offset and
then check for conflicts.

5 Streaming CORFU
In this section, we describe our addition of a streaming
interface to the CORFU shared log implementation.

As we described in Section 2, CORFU consists of
three components: a client-side library that exposes
an append/read/check/trim interface to clients; storage
servers that each expose a 64-bit, write-once address
space over flash storage; and a sequencer that hands out
64-bit counter values.

To implement streaming, we changed the client-side
library to allow the creation and playback of streams.
Internally, the library stores stream metadata as a linked
list of offsets on the address space of the shared log,

along with an iterator. When the application calls
readnext on a stream, the library issues a conventional
CORFU random read to the offset pointed to by the iter-
ator, and moves the iterator forward.

To enable the client-side library to efficiently con-
struct this linked list, each entry in the shared log now
has a small stream header. This header includes a stream
ID as well as backpointers to the last K entries in the
shared log belonging to the same stream. When the
client-side library starts up, the application provides it
with the list of stream IDs of interest to it. For each such
stream, the library finds the last entry in the shared log
belonging to that stream (we’ll shortly describe how it
does so efficiently). The K backpointers in this entry
allow it to construct a K-sized suffix of the linked list
of offsets comprising the stream. It then issues a read
to the offset pointed at by the Kth backpointer to obtain
the previous K offsets in the linked list. In this man-
ner, the library can construct the linked list by striding
backward on the log, issuing N

K reads to build the list for
a stream with N entries. A higher redundancy factor K
for the backpointers translates into a longer stride length
and allows for faster construction of the linked list.

By default, the stream header stores the K backpoint-
ers using 2-byte deltas relative to the current offset,
which overflow if the distance to the previous entry in
the stream is larger than 64K entries. To handle the case
where all K deltas overflow, the header uses an alterna-
tive format where it stores K

4 backpointers as 64-bit ab-
solute offsets which can index any location in the shared
log’s address space. Each header now has an extra bit
that indicates the backpointer format used (relative or
absolute), and a list of either K 2-byte relative backpoint-
ers or K

4 8-byte absolute backpointers. In practice, we
use a 31-bit stream ID and use the remaining bit to store
the format indicator. If K = 4, which is the minimum
required for this scheme, the header uses 12 bytes. To
allow each entry to belong to multiple streams, we store
a fixed number of such headers on the entry. The number
of headers we store is equal to the number of streams the
entry can belong to, which in turn translates to the num-
ber of objects that a single transaction can write to.

Appending to a set of streams requires the client to ac-
quire a new offset by calling increment on the sequencer
(as in conventional CORFU). However, the sequencer
now accepts a set of stream IDs in the client’s request,
and maintains the last K offsets it has issued for each
stream ID. Using this information, the sequencer returns
a set of stream headers in response to the increment re-
quest, along with the new offset. Having obtained the
new offset, the client-side library prepends the stream
headers to the application payload and writes the en-
try using the conventional CORFU protocol to update
the storage nodes. The sequencer also supports an inter-



face to return this information without incrementing the
counter, allowing clients to efficiently find the last entry
for a stream on startup or otherwise.

Updating the metadata for a stream at the client-side
library (i.e., the linked list of offsets) is similar to pop-
ulating it on startup; the library contacts the sequencer
to find the last entry in the shared log belonging to the
stream and backtracks until it finds entries it already
knows about. The operation of bringing the linked list
for a stream up-to-date can be triggered at various points.
It can happen reactively when readnext is called; but this
can result in very high latencies for the readnext oper-
ation if the application issues reads burstily and infre-
quently. It can happen proactively on appends, but this
is wasteful for applications that append to the stream but
never read from it, since the linked list is never consulted
in this case and does not have to be kept up-to-date. To
avoid second-guessing the application, we add an addi-
tional sync call to the modified library which brings the
linked list up-to-date and returns the last offset in the
list to the application. The application is required to call
this sync function before issuing readnext calls to en-
sure linearizable semantics for the stream, but can also
make periodic, proactive sync calls to amortize the cost
of keeping the linked list updated.

Failure Handling: Our modification of CORFU has
a fault-tolerance implication; unlike the original proto-
col, we can no longer tolerate the existence of multi-
ple sequencers, since this can result in clients obtaining
and storing different, conflicting sets of backpointers for
the same stream. To ensure that this case cannot occur,
we modified reconfiguration in CORFU to include the
sequencer as a first-class member of the ‘projection’ or
membership view. When the sequencer fails, the system
is reconfigured to a new view with a different sequencer,
using the same protocol used by CORFU to eject failed
storage nodes. Any client attempting to write to a stor-
age node after obtaining an offset from the old sequencer
will receive an error message, forcing it to update its
view and switch to the new sequencer. In an 18-node
deployment, we are able to replace a failed sequencer
within 10 ms. Once a new sequencer comes up, it has
to reconstruct its backpointer state; in the current im-
plementation, this is done by scanning backward on the
shared log, but we plan on expediting this by having the
sequencer store periodic checkpoints in the log. The to-
tal state at the sequencer is quite manageable; with K = 4
backpointers per stream, the space required is 4⇤8 bytes
per stream, or 32MB for 1M streams.

In addition, crashed clients can create holes in the
log if they obtain an offset from the sequencer and
then fail before writing to the storage units. In conven-
tional CORFU, any client can use the fill call to patch
a hole with a junk value. Junk values are problematic

for streaming CORFU since they do not contain back-
pointers. When the client-side library strides through
the backpointers to populate or update its metadata for a
stream, it has to stop if all K relative backpointers from a
particular offset lead to junk entries (or all K

4 backpoint-
ers in the absolute backpointer format). In our current
implementation, a client in this situation resorts to scan-
ning the log backwards to find an earlier valid entry for
the stream.

6 Evaluation
Our experimental testbed consists of 36 8-core machines
in two racks, with gigabit NICs on each node and 20
Gbps between the top-of-rack switches. Half the nodes
(evenly divided across racks) are equipped with two In-
tel X25V SSDs each. In all the experiments, we run an
18-node CORFU deployment on these nodes in a 9X2
configuration (i.e., 9 sets of 2 replicas each), such that
each entry is mirrored across racks. The CORFU se-
quencer runs on a powerful, 32-core machine in a sepa-
rate rack. The other 18 nodes are used as clients in our
experiments, running applications and benchmarks that
operate on Tango objects; we don’t model the external
clients of these applications and instead generate load
locally. We use 4KB entries in the CORFU log, with
a batch size of 4 at each client (i.e., the Tango runtime
stores a batch of 4 commit records in each log entry).

6.1 Single Object Linearizability
We claimed that Tango objects can provide persistence,
high availability and elasticity with high performance.
To demonstrate this, Figure 8 shows the performance of
a single Tango object with a varying number of views,
corresponding to the use case in Figure 5(a), where the
application uses Tango to persist and replicate state. The
code we run is identical to the TangoRegister code in
Figure 3. Figure 8 (Left) shows the latency / throughput
trade-off on a single view; we can provide 135K sub-
millisecond reads/sec on a read-only workload and 38K
writes/sec under 2 ms on a write-only workload. Each
line on this graph is obtained by doubling the window
size of outstanding operations at the client from 8 (left-
most point) to 256 (right-most point).

Figure 8 (Middle) shows performance for a ‘prima-
ry/backup’ scenario where two nodes host views of the
same object, with all writes directed to one node and all
reads to the other. Overall throughput falls sharply as
writes are introduced, and then stays constant at around
40K ops/sec as the workload mix changes; however, av-
erage read latency goes up as writes dominate, reflect-
ing the extra work the read-only ‘backup’ node has to
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Figure 8: A TangoRegister is persistent with one view; highly available with two views; and elastic with N views.

perform to catch up with the ‘primary’. Note that ei-
ther node can serve reads or writes, effectively enabling
immediate fail-over if one fails. This graph shows that
Tango can be used to support a highly available, high-
throughput service.

Figure 8 (Right) shows the elasticity of linearizable
read throughput; we scale read throughput to a Tango
object by adding more read-only views, each of which
issues 10K reads/sec, while keeping the write workload
constant at 10K writes/sec. Reads scale linearly until
the underlying shared log is saturated; to illustrate this
point, we show performance on a smaller 2-server log
which bottlenecks at around 120K reads/sec, as well as
the default 18-server log which scales to 180K reads/sec
with 18 clients. Adding more read-only views does not
impact read latency; with the 18-server log, we obtain
1 ms reads (corresponding to the point on the previous
graph for a 10K writes/sec workload).

6.2 Transactions

We now show that Tango provides transactional support
within and across objects. We first focus on single-object
transactions. Figure 9 shows transaction throughput and
goodput (i.e., committed transactions) on a single Tan-
goMap object as we vary the degree of contention (by
increasing the number of keys within the map) and in-
crease the number of nodes hosting views of the ob-
ject. Each node performs transactions, and each trans-
action reads three keys and writes three other keys to
the map. Figure 9 (Top) chooses keys using a highly
skewed zipf distribution (corresponding to workload ‘a’
of the Yahoo! Cloud Serving Benchmark [17]). Fig-
ure 9 (Bottom) chooses keys using a uniform distribu-
tion. For 3 nodes, transaction goodput is low with tens

 0
 10
 20
 30
 40

 2  3  4  5  6  7  8

K
s o

f T
xe

s/
se

c

# of Nodes

uniform Tput Goodput

 0
 10
 20
 30
 40

K
s o

f T
xe

s/
se

c
zipf

10 100 1K 10K 100K 1M 10M
Total # of Keys:

 0
 10
 20
 30
 40

K
s o

f T
xe

s/
se

c
zipf Tput Goodput

Figure 9: Transactions on a fully replicated Tan-
goMap offer high, stable goodput.

or hundreds of keys but reaches 99% of throughput in
the uniform case and 70% in the zipf case with 10K keys
or higher. Transaction throughput hits a maximum with
three nodes and stays constant as more nodes are added;
this illustrates the playback bottleneck, where system-
wide throughput is limited by the speed at which a single
client can play the log. Transaction latency (not shown
in the graph) averages at 6.5 ms with 2 nodes and 100K
keys. Next, we look at how layered partitioning allevi-
ates the playback bottleneck.

Figure 10 (Left) substantiates our claim that layered
partitioning can provide linear scaling until the under-
lying shared log is saturated. Here, each node hosts
the view for a different TangoMap and performs single-
object transactions (with three reads and three writes)
over it. We use both a small shared log with 6 servers as
well as the default 18-server one. As expected, through-
put scales linearly with the number of nodes until it satu-
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rates the shared log on the 6-server deployment at around
150K txes/sec. With an 18-server shared log, through-
put scales to 200K txes/sec and we do not encounter the
throughput ceiling imposed by the shared log.

We stated that the underlying shared log enables fast
transactions across objects. We now look at two types
of transactions across different objects. First, in Figure
10 (Middle), we consider the partitioned setup from the
previous experiment with 18 nodes running at 200K tx-
es/sec, where each node hosts a view for a different Tan-
goMap with 100K keys. We introduce cross-partition
transactions that read the local object but write to both
the local as well as a remote object (this corresponds to
an operation that moves a key from one map to another).

To provide a comparison point, we modified the
Tango runtime’s EndTX call to implement a simple, dis-
tributed 2-phase locking (2PL) protocol instead of ac-
cessing the shared log; this protocol is similar to that
used by Percolator [38], except that it implements seri-
alizability instead of snapshot isolation for a more di-
rect comparison with Tango. On EndTX-2PL, a client
first acquires a timestamp from a centralized server (cor-
responding to the Percolator timestamp server; we use
our sequencer instead); this is the version of the current
transaction. It then locks the items in the read set. If any
item has changed since it was read, the transaction is
aborted; if not, the client then contacts the other clients
in the write set to obtain a lock on each item being mod-
ified as well as the latest version of that item. If any of
the returned versions are higher than the current transac-
tion’s version (i.e., a write-write conflict) or a lock can-
not be obtained, the transaction unlocks all items and
retries with a new sequence number. Otherwise, it sends
a commit to all the clients involved, updating the items
and their versions and unlocking them.

As Figure 10 (Middle) shows, throughput degrades

gracefully for both Tango and 2PL as we double the per-
centage of cross-partition transactions. We don’t show
goodput in this graph, which is at around 99% for both
protocols with uniform key selection. Our aim is to show
that Tango has scaling characteristics similar to a con-
ventional distributed protocol while suffering from none
of the fault-tolerance problems endemic to such proto-
cols, such as deadlocks, crashed coordinators, etc.

Next, we look at a different type of transaction in
Figure 10 (Right), where each node in a 4-node setup
hosts a view of a different TangoMap as in the previ-
ous experiment, but also hosts a view for a common
TangoMap shared across all the nodes (corresponding to
the use case in Figure 5(d)). Each map has 100K keys.
For some percentage of transactions, the node reads and
writes both its own object as well as the shared object;
we double this percentage on the x-axis, and through-
put falls sharply going from 0% to 1%, after which it
degrades gracefully. Goodput (not shown in the graph)
drops marginally from 99% of throughput to 98% of
throughput with uniform key selection.

6.3 Other Data Structures
To show that Tango can support arbitrary, real-world
data structures, we implemented the ZooKeeper inter-
face over Tango in less than 1000 lines of Java code,
compared to over 13K lines for the original [15] (how-
ever, our code count does not include ancillary code
used to maintain interface compatibility, such as vari-
ous Exceptions and application callback interfaces, and
does not include support for ACLs). The performance
of the resulting implementation is very similar to the
TangoMap numbers in Figure 10; for example, with
18 clients running independent namespaces, we obtain
around 200K txes/sec if transactions do not span names-



paces, and nearly 20K txes/sec for transactions that
atomically move a file from one namespace to another.
The capability to move files across different instances
does not exist in ZooKeeper, which supports a limited
form of transaction within a single instance (i.e., a multi-
op call that atomically executes a batch of operations).

We also implemented the single-writer ledger abstrac-
tion of BookKeeper [30] in around 300 lines of Java
code (again, not counting Exceptions and callback inter-
faces). Ledger writes directly translate into stream ap-
pends (with some metadata added to enforce the single-
writer property), and hence run at the speed of the un-
derlying shared log; we were able to generate over 200K
4KB writes/sec using an 18-node shared log. To ver-
ify that our versions of ZooKeeper and BookKeeper
were full-fledged implementations, we ran the HDFS na-
menode over them (modifying it only to instantiate our
classes instead of the originals) and successfully demon-
strated recovery from a namenode reboot as well as fail-
over to a backup namenode.

7 Related Work
Tango fits within the SMR [42] paradigm, replicating
state by imposing a total ordering over all updates; in the
vocabulary of SMR, Tango clients can be seen as learn-
ers of the total ordering, whereas the storage nodes com-
prising the shared log play the role of acceptors. A key
difference is that the shared log interface is a superset
of the traditional SMR upcall-based interface, providing
persistence and history in addition to consistency.

Tango also fits into the recent trend towards enabling
strong consistency across sharded systems via a source
of global ordering; for example, Percolator [38] uses
a central server to issue non-contiguous timestamps to
transactions, Spanner [18] uses real time as an order-
ing mechanism via synchronized clocks, and Calvin [44]
uses a distributed agreement protocol to order batches of
input transactions. In this context, the Tango shared log
can be seen as a more powerful ordering mechanism,
since it allows any client to iterate over the global order-
ing and examine any subsequence of it.

Multiple systems have aimed to augment objects
with strong consistency, persistence and fault-tolerance
properties. Thor [32] provided applications with per-
sistent objects stored on backend servers. More re-
cently, Live Objects [37] layer object interfaces over
virtual synchrony, OpenReplica [6] transparently repli-
cates Python objects over a Paxos implementation, while
Tempest [34] implements fault-tolerant Java objects over
reliable broadcast and gossip. Tango objects are similar
to the Distributed Data Structures proposed in Ninja [22,
23], in that they provide fault-tolerant, strongly consis-

tent data structures, but differ by providing transactions
across items, operations, and different data structures.

Tango is also related to log-structured storage systems
such as LFS [39] and Zebra [24]. A key difference is
that Tango assumes a shared log with an infinite address
space and a trim API; internally, the shared log imple-
mentation we use implements garbage collection tech-
niques similar to those found in modern SSDs.

The transaction protocol described in Section 3 is in-
spired by Hyder [11], which implemented optimistic
concurrency control for a fully replicated database over
a shared log; we extend the basic technique to work in
a partitioned setting over multiple objects, as described
in Section 4. In addition, the Hyder paper included only
simulation results; our evaluation provides the first im-
plementation numbers for transactions over a shared log.
The original CORFU paper implemented atomic multi-
puts on a shared log, but did not focus on arbitrary data
structures or full transactions over a shared log.

A number of recent projects have looked at new pro-
gramming abstractions for non-volatile RAM [16]; some
of these provide transactional interfaces over commod-
ity SSDs [40] or byte-addressable NV-RAM [47]. Tango
has similar goals to these projects but is targeted at a dis-
tributed setting, where fault-tolerance and consistency
are as important as persistence.

8 Conclusion
In the rush to produce better tools for distributed pro-
gramming, metadata services have been left behind; it is
arguably as hard to build a highly available, persistent
and strongly consistent metadata service today as it was
a decade earlier. Tango fills this gap with the abstraction
of a data structure backed by a shared log. Tango objects
are simple to build and use, relying on simple append
and read operations on the shared log rather than com-
plex messaging protocols. By leveraging the shared log
to provide key properties – such as consistency, persis-
tence, elasticity, atomicity and isolation – Tango makes
metadata services as easy to write as a MapReduce job
or a photo-sharing website.
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