
Transactions 

Overview 
l  Transaction: A sequence of database actions enclosed 

within special tags 
l  Properties: 

l  Atomicity: Entire transaction or nothing 
l  Consistency: Transaction, executed completely, takes database 

from one consistent state to another 
l  Isolation: Concurrent transactions appear to run in isolation 
l  Durability: Effects of committed transactions are not lost 

l  Consistency: Programmer needs to guarantee this 
l  DBMS can do a few things, e.g., enforce constraints on the data 

l  Rest: DBMS guarantees 



How does.. 
l  .. this relate to queries that we discussed ? 

l  Queries don’t update data, so durability and consistency not 
relevant 

l  Would want concurrency  
l  Consider a query computing balance at the end of the day 

l  Would want isolation 
l  What if somebody makes a transfer while we are computing 

the balance 
l  Typically not guaranteed for such long-running queries 

l  TPC-C vs TPC-H 
l  data entry vs decision support 

Assumptions and Goals 
l  Assumptions: 

l  The system can crash at any time 
l  Similarly, the power can go out at any point 

l  Contents of the main memory won’t survive a crash, or power outage 
l  BUT… disks are durable. They might stop, but data is not lost. 

l  For now. 
l  Disks only guarantee atomic sector writes, nothing more 
l  Transactions are by themselves consistent 

l  Goals: 
l  Guaranteed durability, atomicity 
l  As much concurrency as possible, while not compromising 

isolation and/or consistency 
l  Two transactions updating the same account balance… NO 
l  Two transactions updating different account balances… YES 



Transaction States 
l  active – initial state, while executing 
l  partially committed – after final statement 
l  failed – after discover that can not proceed 
l  aborted – after rolled back and DB restored 
l  committed – after successful completion 

Next… 
l  Concurrency control schemes 

l  A CC scheme is used to guarantee that concurrency does not 
lead to problems 

l  For simplicity, we will ignore durability during this section 
l  So no crashes 
l  Though transactions may still abort 

l  Schedules 

l  When is concurrency okay ? 
l  Serial schedules 
l  Serializability 



A Schedule 

T1 
read(A) 
A = A -50 
write(A) 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
read(B) 
B = B+ tmp 
write(B) 

Transactions: 
             T1:   transfers $50 from A to B 
             T2:   transfers 10% of A to B 
Database constraint: A + B is constant (checking+saving accts) 

Effect:      Before       After 
A      100          45 
B        50        105 

 
 

Each transaction obeys the 
constraint. 
 
The schedule does too. 
 

Schedules 
l  A schedule is simply a (possibly interleaved) execution 

sequence of transaction instructions 

l  Serial Schedule: A schedule in which transactions 
appear one after the other 
l  i.e., No interleaving 

l  Serial schedules satisfy isolation and consistency 
l  Since each transaction by itself does not introduce inconsistency 



Another serial schedule 
T1 
 
 
 
 
 
 
 
 
read(A) 
A = A -50 
write(A) 
read(B) 
B=B+50 
write(B) 

T2 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
read(B) 
B = B+ tmp 
write(B) 

Consistent ? 
     Constraint is satisfied. 
 
Since each Xion is consistent, any  
serial schedule must be consistent 

Effect:      Before       After 
 A      100          40 
 B       50         110 
  

Another schedule 

T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
 
 
 
 
 
read(B) 
B = B+ tmp 
write(B) 

Is this schedule okay ? 

Lets look at the final effect… 

Effect:      Before       After 
           A      100          45 
           B       50         105 
 

Consistent.  
So this schedule is okay too. 



Another schedule 

T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
 
 
 
 
 
read(B) 
B = B+ tmp 
write(B) 

Is this schedule okay ? 

Lets look at the final effect… 

Effect:      Before       After 
           A      100          45 
           B       50         105 
 

Further, the effect same as the 
serial schedule 1. 
 
Called serializable 

Example Schedules (Cont.) 
                 A “bad” schedule 

    

Not consistent 

T1 
read(A) 
A = A -50 
 
 
 
 
 
 
write(A) 
read(B) 
B=B+50 
write(B) 

T2 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
read(B) 
 
 
 
 
 
 
B = B+ tmp 
write(B) 

Effect:      Before       After 
           A      100          50 
           B       50           60 

 



Serializability 
l  A schedule is called serializable if: 

l  its final effect is the same as that of a serial schedule 

l  Serializability à database remains consistent 
l  Since serial schedules are fine 

l  Non-serializable schedules are unlikely to result in 
consistent databases 

l  We will ensure serializability 
l  Though typically relaxed in real high-throughput environments... 

Serializability 
l  Not possible to look at all n! serial schedules to check if 

the effect is the same 
l  Instead ensure serializability by disallowing certain schedules 

l  Conflict serializability 
 
l  View serializability 

l  allows more schedules 



Conflict Serializability 
l  Two read/write instructions “conflict” if  

l  They are by different transactions 
l  They operate on the same data item 
l  At least one is a “write” instruction 

l  Why do we care ? 
l  If two read/write instructions don’t conflict, they can be 

“swapped” without any change in the final effect 
l  If they conflict they CAN’T be swapped 

Equivalence by Swapping 
T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
 
 
 
 
 
read(B) 
B = B+ tmp 
write(B) 

T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
read(B) 
 
B=B+50 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
 
 
write(A) 
 
 
 
read(B) 
B = B+ tmp 
write(B) 

Effect:      Before       After 
           A      100          45 
           B       50         105 
 

Effect:      Before       After 
           A      100          45 
           B       50         105 
 

== 



Equivalence by Swapping 
T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
 
 
 
 
 
read(B) 
B = B+ tmp 
write(B) 

T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
 
read(B) 
B=B+50 
 
 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
 
 
 
read(B) 
 
 
B = B+ tmp 
write(B) 

Effect:      Before       After 
           A      100          45 
           B       50         105 
 

Effect:      Before       After 
           A      100          45 
           B       50           55 
 

! == 

Conflict Serializability 
l  Conflict-equivalent schedules: 

l  If S can be transformed into S’ through a series of swaps, S and 
S’ are called conflict-equivalent 

l  conflict-equivalence guarantees same final effect on database 

l  A schedule S is conflict-serializable if it is conflict-
equivalent to a serial schedule 



Equivalence by Swapping 
T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
 
 
 
 
 
read(B) 
B = B+ tmp 
write(B) 

T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
read(B) 
B=B+50 
 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
 
 
 
write(A) 
 
 
read(B) 
B = B+ tmp 
write(B) 

Effect:      Before       After 
           A      100          45 
           B       50           105 
 

Effect:      Before       After 
           A      100          45 
           B       50           105 
 

== 

Equivalence by Swapping 
T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
 
 
 
 
 
read(B) 
B = B+ tmp 
write(B) 

T1 
read(A) 
A = A -50 
write(A) 
 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
 
read(B) 
B = B+ tmp 
write(B) 

Effect:      Before       After 
           A      100          45 
           B       50           105 
 

Effect:      Before       After 
           A      100          45 
           B       50           105 
 

== 



Example Schedules (Cont.) 
                 A “bad” schedule 

    T1 
read(A) 
A = A -50 
 
 
 
 
 
 
write(A) 
read(B) 
B=B+50 
write(B) 

T2 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 
read(B) 
 
 
 
 
 
 
B = B+ tmp 
write(B) 

X 

Y Can’t move Y below X 
    read(B) and write(B) conflict 

Other options don’t work either 

Not Conflict Serializable 

View-Serializability 
l  Following not conflict-serializable 

BUT, it is serializable 
l  The conflicting write instructions don’t matter!  (in absence of reads) 
l  The final write is the only one that matters 

l  View-serializability, for S’ and S, and each datum Q: 
l  if Ti reads initial value of Q in S, must also in S’ 
l  if Ti reads value written from Tj in S, must also in S’ 
l  if Ti performs final write to Q in S, must also in S’ 



Other notions of serializability 

l  Not conflict-serializable or view-serializable, but serializable 
l  Mainly because of the +/- only operations 

l  Requires analysis of the actual operations, not just read/write 
operations 

l  Most high-performance transaction systems will allow these 

Testing for conflict-serializability 
l  Given a schedule, determine if it is conflict-serializable 

l  Draw a precedence-graph over the transactions 
l  A directed edge from T1 to T2, if  

l  they have conflicting instructions, and  
l  T1’s conflicting instruction comes first 

l  If there is a cycle in the graph, not conflict-serializable 
l  Can be checked in at most O(n+e) time, where n is the number 

of vertices, and e is the number of edges  

l  If there is none, conflict-serializable 

l  Whereas: testing for view-serializability is NP-hard. 
 



Example Schedule (Schedule A) + Precedence Graph 

 T1    T2    T3    T4    T5 
  read(X) 

read(Y) 
read(Z) 

        read(V) 
        read(W) 
        read(W) 
  read(Y) 
  write(Y) 
    write(Z) 

read(U) 
      read(Y) 
      write(Y) 
      read(Z) 
      write(Z) 

read(U) 
write(U) 

 T1    T2    T3    T4    T5 
  read(X) 

read(Y) 
read(Z) 

        read(V) 
        read(W) 
        read(W) 
  read(Y) 
  write(Y) 
    write(Z) 

read(U) 
      read(Y) 
      write(Y) 
      read(Z) 
      write(Z) 

read(U) 
write(U) 

Example Schedule (Schedule A) + Precedence Graph 

T4 

T1 T2 

Y 

Y 

T3 

Z 

Z 



Recap so far… 
l  We discussed: 

l  Serial schedules, serializability 
l  Conflict-serializability, view-serializability 
l  How to check for conflict-serializability 

l  We haven’t discussed: 
l  How to guarantee serializability ? 

l  Allowing transactions to run, and then aborting them if the schedules 
aren’t serializable can be expensive 

l  We can instead use schemes to guarantee that the schedule will 
be conflict-serializable 
l  Hint: locks 

l  Also, recoverability ? 

T1 
read(A) 
A = A -50 
write(A) 
 
 
 
 
 
 
read(B) 
B=B+50 
write(B) 

T2 
 
 
 
read(A) 
tmp = A*0.1 
A = A – tmp 
write(A) 

Recoverability 
l  Serializability is good for 

consistency 

l  What if transactions fail ? 
l  T2 has already committed 

l  A user might have been notified 
l  Now T1 abort creates a problem 

l  T2 has seen its effect, so just 
aborting T1 is not enough. T2 
must be aborted as well (and 
possibly restarted) 

l  But T2 is committed 

ABORT 

COMMIT 



Recoverability 
l  Recoverable schedule: If T1 has read something T2 has 

written, T2 must commit before T1 
l  Otherwise, if T1 commits, and T2 aborts, we have a problem 

l  Cascading rollbacks: If T10 aborts, T11 must abort, and 
hence T12 must abort and so on. 

Recoverability 
l  Dirty read: Reading a value written by a transaction that 

hasn’t committed yet 

l  Cascadeless schedules: 
l  A transaction only reads committed values. 
l  So if T1 has written A, but not committed it, T2 can’t read it. 

l  No dirty reads 

l  Cascadeless à No cascading rollbacks 
l  That’s good 
l  We will try to guarantee that as well 



Recap so far… 
l  We discussed: 

l  Serial schedules, serializability 
l  Conflict-serializability, view-serializability 
l  How to check for conflict-serializability 
l  Recoverability, cascade-less schedules 

l  We haven’t discussed: 
l  How to guarantee serializability ? 

l  Allowing transactions to run, and then aborting them if the schedules 
aren’t serializable can be expensive 

l  We can instead use schemes to guarantee that the schedule will 
be conflict-serializable 
l  Hint: locks 

Concurrency Control 



Approach, Assumptions etc.. 
l  Approach 

l  Guarantee conflict-serializability by limiting concurrency 
l  Lock-based 

l  Assumptions: 
l  Still ignoring durability 

l  So no crashes 
l  Though transactions may still abort 

l  Goal: 
l  Serializability 
l  Minimize the bad effect of aborts (cascade-less schedules only)  

Lock-based Protocols 
l  Transactions must acquire locks before using data 

l  Two types: 
l  Shared (S) locks (also called read locks) 

l  Obtained if we want to only read an item 
l  Exclusive (X) locks (also called write locks) 

l  Obtained for updating a data item 



Lock instructions 
l  New instructions 

- lock-S: shared lock request 
- lock-X: exclusive lock request 
- unlock: release previously held lock 
 

Example schedule: 
read(B) 
B ßB-50 
write(B) 
read(A) 
A ßA + 50 
write(A) 

read(A) 
read(B) 
display(A+B) 

T1 T2 

Lock instructions 
l  New instructions 

- lock-S: shared lock request 
- lock-X: exclusive lock request 
- unlock: release previously held lock 
 

Example schedule: 
lock-X(B) 
read(B) 
B ßB-50 
write(B) 
unlock(B) 
 
lock-X(A) 
read(A) 
A ßA + 50 
write(A) 
unlock(A) 

lock-S(A) 
read(A) 
unlock(A) 
lock-S(B) 
read(B) 
unlock(B) 
display(A+B) 

T1 T2 



Lock-based Protocols 

l  Lock requests are made to the concurrency control manager 

l  It decides whether to grant a lock request 

l  Assume T2 holds lock, T1 asks for a lock on same: 

l  If compatible, grant the lock, otherwise T1 waits in a queue. 

Held lock Lock wanted Allow?

Shared Shared  YES

Shared Exclusive NO

Exclusive - NO

Lock instructions 
l  New instructions 

- lock-S: shared lock request 
- lock-X: exclusive lock request 
- unlock: release previously held lock 
 

Example schedule: 
lock-X(B) 
read(B) 
B ßB-50 
write(B) 
unlock(B) 
 
lock-X(A) 
read(A) 
A ßA + 50 
write(A) 
unlock(A) 

lock-S(A) 
read(A) 
unlock(A) 
 
lock-S(B) 
read(B) 
unlock(B) 
display(A+B) 

T1 T2 

Not enough to take minimum 
locks when you need to  
read/write something! 

? 

Not serializable 



2-Phase Locking Protocol (2PL) 
l  Phase 1: Growing phase 

l  Transaction may obtain locks 
l  But may not release them 

l  Phase 2: Shrinking phase 
l  Only release locks 

l  2PL guarantees conflict-
serializability 
l  lock-point: the time at which a 

transaction acquired last lock 
l  if lock-point(T1) < lock-

point(T2), there can’t be an 
edge from T2 to T1 in the 
precedence graph 

lock-X(B) 
read(B) 

B ßB-50 
write(B) 

unlock(B) 
 

lock-X(A) 
read(A) 

A ßA + 50 
write(A) 

unlock(A) 

T1 

2 Phase Locking 
l  Example: T1 in 2PL 

T1

lock-X(B)
read(B)
B ß B - 50
write(B)
lock-X(A)
read(A)
A ß A - 50
write(A)

unlock(B)
unlock(A)

{Growing phase 

{Shrinking phase 



2 Phase Locking 
l  Guarantees conflict-serializability, but not cascade-

less recoverability 

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
commit lock-S(A)

read(A)
commit 

2 Phase Locking 
l  Guarantees conflict-serializability,  

l  but not cascade-less recoverability 

l  Guaranteeing just recoverability: 
l  If T2 performs a dirty read from T1 (i.e., T1 has not 

committed), then T2 can’t commit unless T1 either commits or 
aborts 

l  If T1 commits, T2 can proceed with committing 
l  If T1 aborts, T2 must abort 

l  So cascades still happen 
 



Strict 2PL 

Strict 2PL 
will not  

allow that 

l  Release exclusive locks only at the very 
end, just before commit or abort 

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit 

Strict 2PL 
l  Release exclusive locks only at the very 

end, just before commit or abort 
T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)
commit

lock-X(A)
read(A)
write(A)
unlock(A)
commit

lock-S(A)
read(A)
commit 

Works. Guarantees cascade-less and recoverable schedules. 



Strict 2PL 
l  Release exclusive locks only at the very 

end, just before commit or abort 
l  Read locks are ignored 

l  Rigorous 2PL: Release both exclusive and 
read locks only at the very end 
l  Makes serializability order === the commit order 
l  More intuitive behavior for the users 

l  No difference for the system 

Strict 2PL 
l  Lock conversion: 

l  Transaction might not be sure what it needs a 
write lock on 

l  Start with a S lock  

l  Upgrade to an X lock later if needed 

l  Doesn’t change any of the other properties of 
the protocol 



Implementation of Locking 

l  A separate process, or a separate module 

l  Uses a lock table to keep track of currently 
assigned locks and the requests for locks  
l  Read up in the book 

Recap so far… 
l  Concurrency Control Scheme 

l  A way to guarantee serializability, recoverability etc 

l  Lock-based protocols 
l  Use locks to prevent multiple transactions accessing the 

same data items 

l  2 Phase Locking 
l  Locks acquired during growing phase, released during 

shrinking phase 

l  Strict 2PL, Rigorous 2PL 



More Locking Issues: Deadlocks 
l  No xction proceeds: 
Deadlock 

 - T1 waits for T2 to unlock A 
 - T2 waits for T1 to unlock B 

T1 T2

lock-X(B)
read(B)
B ß B-50
write(B) 

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

Rolling back transactions can be costly... 

Deadlocks 

l  2PL does not prevent deadlock 
l  Strict doesn’t either 

T1 T2

lock-X(B)
read(B)
B ß B-50
write(B) 

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

Rolling back transactions can be costly... 



Preventing deadlocks 
l  Graph-based protocols 

l  Acquire locks only in a well-known order  

l  Might not know locks in advance 

T1 T2

lock-X(B)
read(B)
B ß B-50
write(B) 

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

T1 T2

lock-X(A)
lock-X(B)
read(B)
B ß B-50
write(B) 

lock-S(A)
read(A)
lock-S(B)

bad good 

Detecting existing deadlocks 
l  Timeouts (local information) 
l  waits-for graph (global information): 

l  edge Ti à Tj when Ti waiting for Tj 

T1 T2 T3 T4

S(V)

X(V)

S(W)

X(Z)

S(V)

X(W)

Suppose T4 requests lock-S(Z).... 

T1 

T2 

T3 

T4 



Dealing with Deadlocks 
l  Deadlock detected, now what ? 

l  Will need to abort some transaction 

l  Victim selection 
l  Use time-stamps; say T1 is older than T2 
l  wait-die scheme: T1 will wait for T2. T2 will not wait for T1; instead it will 

abort and restart 
l  wound-wait scheme: T1 will wound T2 (force it to abort) if it needs a lock 

that T2 currently has; T2 will wait for T1. 

l  Issues 
l  Prefer to prefer transactions with the most work done 
l  Possibility of starvation 

l  If a transaction is aborted too many times, it may be given 
priority in continuing 

Locking granularity 



Locking granularity 
l  Locking granularity 

l  What are we taking locks on ? Tables, tuples, attributes ? 

l  Coarse granularity 
l  e.g. take locks on tables 
l  less overhead (the number of tables is not that high) 
l  very low concurrency 

 
l  Fine granularity 

l  e.g. take locks on tuples 
l  much higher overhead 
l  much higher concurrency 
l  What if I want to lock 90% of the tuples of a table ? 

l  Prefer to lock the whole table in that case 

(not always done) 

Granularity Hierarchy 

   The highest level in the example hierarchy is the entire database. 
   The levels below are of type area, file or relation and record in that 

order. 
   Can lock at any level in the hierarchy 



Granularity Hierarchy 
l  New lock mode, called intentional locks 

l  Declare an intention to lock parts of the subtree below a node 
l  IS: intention shared 

l  The lower levels below may be locked in the shared mode 
l  IX: intention exclusive 
l  SIX: shared and intention-exclusive 

l  The entire subtree is locked in the shared mode, but I might also want 
to get exclusive locks on the nodes below 

l  Protocol: 
l  If you want to acquire a lock on a data item, all the ancestors 

must be locked as well, at least in the intentional mode  
l  So you always start at the top root node 

Granularity Hierarchy 

(1) Want to lock F_a in shared mode, DB and A1 must be locked in at 
least IS mode (but IX, SIX, S, X are okay too) 

(2) Want to lock rc1 in exclusive mode, DB, A2,Fc must be locked in at 
least IX mode (SIX, X are okay too) 



Compatibility Matrix with Intention Lock Modes 

l  Locks from different transactions: 

IS IX S S IX X  

IS 

IX 

S 

S IX 

X  

ü 

ü 

ü 

ü 

× 

ü ü ü 

ü 

ü × 

× 

× × × × 

× × × 

× × 

× 

× 

× × holder 

requestor 

T1(S) 

T1(IS) 

Example 

R1 

t1 
t2 t3 t4 

, T2(IX) 

T2(X) 



Examples 
R 

t1 t3 t4 t2 

f2.1 f2.2 f4.2 f4.2 

T1(IX) 

T1(IX) 

T1(X) 

R 

t3 t4 t2 

f2.1 f2.2 f4.2 f4.2 

T1(IS) 

T1(S) 

R 

t3 t4 t2 

f2.1 f2.2 f4.2 f4.2 

T1(SIX) 

T1(IX) 

T1(X) 

Can T2 access object f2.2 in X mode?  
What locks will T2 get? 

 

t1 

t1 

R 

t2 

f2.2 

R 

Other CC Schemes 
l  Time-stamp based 

l  Transactions are issued time-stamps when they enter the 
system 

l  The time-stamps determine the serializability order 
l  So if T1 entered before T2, then T1 should be before T2 in the 

serializability order 
l  Say timestamp(T1) < timestamp(T2) 
l  If T1 wants to read data item A 

l  If any transaction with larger time-stamp wrote that data item, then 
this operation is not permitted, and T1 is aborted 

l  If T1 wants to write data item A 
l  If a transaction with larger time-stamp already read that data item 

or written it, then the write is rejected and T1 is aborted 
l  Aborted transaction are restarted with a new timestamp 

l  Possibility of starvation 



Other CC Schemes 

l  Time-stamp based 
l  Example 

T1 T2 T3 T4 T5 

read(Y) 
read(X)  

read(Y) 
write(Y)  
write(Z)  

read(Z)  
read(X)  
abort   read(X)  

write(Z)  
abort   

write(Y)  
write(Z)   

ACID, cont 



Other CC Schemes 
l  Time-stamp based 

l  As discussed here, has too many problems 
l  Starvation 
l  Non-recoverable 
l  Cascading rollbacks required 

l  Most can be solved fairly easily 
l  Read up 

l  Remember: We can always put more and more restrictions on 
what the transactions can do to ensure these things 
l  The goal is to find the minimal set of restrictions to as to not hinder 

concurrency 

Other CC Schemes 
l  Optimistic concurrency control 

l  Also called validation-based  

l  Intuition  
l  Let the transactions execute as they wish 
l  At the very end when they are about to commit, check 

if there might be any problems/conflicts etc 
§  If no, let it commit 
§  If yes, abort and restart 

l  Optimistic: The hope is that there won’t be too 
many problems/aborts 



Isolation Levels: Snapshot Isolation 
l  Very popular scheme, used as the primary 

scheme by many systems including Oracle, 
PostgreSQL etc… 
l  Several others support this in addition to locking-based 

protocol 

l  A type of “optimistic concurrency control” 

l  Key idea:  
l  For each object, maintain past “versions” of the data 

along with timestamps 
l  Every update to an object causes a new version to be generated 

Isolation Levels: Snapshot Isolation 
l  Read queries: 

l  Let “t” be the “time-stamp” of the query, i.e., the time at which it entered 
the system 

l  When the query asks for a data item, provide a version of the data item 
that was latest as of “t” 
l  Even if the data changed in between, provide an old version 

l  No locks needed, no waiting for any other transactions or queries 
l  The query executes on a consistent snapshot of the database 

l  Update queries (transactions): 
l  Reads processed as above on a snapshot 
l  Writes are done in private storage 
l  At commit time, for each object that was written, check if some other 

transaction updated the data item since this transaction started 
l  If yes, then abort and restart 
l  If no, make all the writes public simultaneously (by making new versions) 



Isolation Levels: Snapshot Isolation 
l  Advantages: 

l  Read query don’t block at all, and runs very fast 
l  As long as conflicts are rare, update transactions don’t 

abort either 
l  Overall better performance than locking-based 

protocols 

l  Major disadvantage: 
l  Not serializable 
l  Inconsistencies may be introduced 
l  See the wikipedia article for more details and an 

example 
l  http://en.wikipedia.org/wiki/Snapshot_isolation 

The “Phantom” problem 
l  An interesting problem that comes up for dynamic databases 
l  Schema: accounts(acct_no, balance, zipcode, …) 
l  Transaction 1: Find the number of accounts in zipcode = 20742, and 

divide $1,000,000 between them 
l  Transaction 2: Insert <acctX, …, 20742, …> 
l  Execution sequence: 

l  T1 locks all tuples corresponding to “zipcode = 20742”, finds the total 
number of accounts (= num_accounts) 

l  T2 does the insert 
l  T1 computes 1,000,000/num_accounts 
l  When T1 accesses the relation again to update the balances, it finds 

one new (“phantom”) tuple (the new tuple that T2 inserted) 
l  Not serializable 



l  Transactions are issued time-stamps 
l  When they enter the system 
l  Time-stamps determine the serializability order 
l  If T1 entered before T2,  
     Then T1 before T2 in the serializability order 

l  Say timestamp(T1) < timestamp(T2) 
l  If T1 wants to read data item A 

l  If any transaction with larger time-stamp wrote that data item, then 
this operation is not permitted, and T1 is aborted 

l  If T1 wants to write data item A 
l  If a transaction with larger time-stamp already read or written that 

data item, then the write is rejected and T1 is aborted 
l  Aborted transaction are restarted with a new timestamp 

l  Possibility of starvation 

Time-stamp based CC 

l  Example 

T1 T2 T3 T4 T5 

read(Y) 
write(X)  

read(Y) 
write(Y)  
write(Z)  

read(Z)  
read(X)  

read(X)  
write(Z)  

write(Y)  
write(Z)   

TS(T1) < TS(T2) < TS(T3) < TS(T4) < TS(T5) 
 

Time-stamp based CC 



l  Example 

T1 T2 T3 T4 T5 

read(Y) 
write(X)  

read(Y) 
write(Y)  
write(Z)  

read(Z)  
read(X)  
abort   

read(X)  
write(Z)  

abort   
write(Y)  
write(Z)   

TS(T1) < TS(T2) < TS(T3) < TS(T4) < TS(T5) 
 

abort   

Time-stamp based CC 

l  The following set of instructions is not conflict-serializable: 

l  As discussed before, not even view-serializabile: 
l  if Ti reads initial value of Q in S, must also in S’ 
l  if Ti reads value written from Tj in S, must also in S’ 
l  if Ti performs final write to Q in S, must also in S’ 

Time-stamp based CC 



l  Thomas’ Write Rule 
l  Ignore obsolete writes 

l  Say timestamp(T1) < timestamp(T2) 
l  If T1 wants to read data item A 

l  If any transaction with larger time-stamp wrote that data item, then 
this operation is not permitted, and T1 is aborted 

l  If T1 wants to write data item A 
l  If a transaction with larger time-stamp already read or written that 

data item, then the write is rejected and T1 is aborted 
l  If a transaction with larger time-stamp already written that data 

item, then the write is ignored 

Time-stamp based CC 

ignored 

l  Time-stamp based 
l  Many potential problems 

l  Starvation 
l  Non-recoverable 
l  Cascading rollbacks required 

l  Most can be solved fairly easily 
l  Read up 

l  Remember: We can always put more and more 
restrictions on what the transactions can do to ensure 
these things 
l  The goal is to find the minimal set of restrictions to as to not 

hinder concurrency 

Other CC Schemes 



l  Optimistic concurrency control 
l  Also called validation-based  

l  Intuition  
l  Let the transactions execute as they wish 
l  At the very end when they are about to commit, check if there 

might be any problems/conflicts etc 
§  If no, let it commit 
§  If yes, abort and restart 

l  Optimistic: The hope is that there won’t be too many problems/
aborts 

Other CC Schemes 

Recovery 



Context 
l  ACID properties: 

l  We have talked about Isolation and Consistency 
l  How do we guarantee Atomicity and Durability ? 

l  Atomicity: Two problems 
§  Part of the transaction is done, but we want to cancel it 

§  ABORT/ROLLBACK 
§  System crashes during the transaction. Some changes made it to 

the disk, some didn’t. 
l  Durability: 

§  Transaction finished. User notified. But changes not sent to disk 
yet (for performance reasons). System crashed. 

l  Essentially similar solutions 

Reasons for crashes 
l  Transaction failures 

l  Logical errors, deadlocks 

l  System crash 
l  Power failures, operating system bugs etc 

l  Disk failure 
l  Head crashes; for now we will assume  

l  STABLE STORAGE: Data never lost. Can approximate by 
using RAID and maintaining geographically distant copies 
of the data 



Approach, Assumptions etc.. 
l  Approach: 

l  Guarantee A and D: 
l  by controlling how the disk and memory interact,  
l  by storing enough information during normal processing to recover from failures 
l  by developing algorithms to recover the database state 

l  Assumptions: 
l  System may crash, but the disk is durable 
l  The only atomicity guarantee is that a disk block write is atomic 

l  Obvious naïve solutions exist that work, but are too expensive. 
l  E.g. A shadow copy solution 

l  Make a copy of the database; do the changes on the copy; do an atomic switch of 
the dbpointer at commit time 

l  Goal is to do this as efficiently as possible 

Buffer Management 
l  Buffer manager  

l  sits between DB and disk 
l  writing every operation to disk, as it occurs, too slow… 
l  ideally only write a block to disk at commit 

l  aggregates updates 
l  trans might not commit 

l  Bottom line 
l  want to decouple data writes from DB operations 



STEAL vs NO STEAL, FORCE vs NO FORCE 
l  STEAL: 

l  The buffer manager can steal a (memory) page from the 
database 
l  ie., it can write an arbitrary page to the disk and use that page for 

something else from the disk 
l  In other words, the database system doesn’t control the buffer 

replacement policy 
l  Why a problem ? 

l  The page might contain dirty writes, ie., writes/updates by a 
transaction that hasn’t committed 

l  But, we must allow steal for performance reasons. 

l  NO STEAL: 
l  Stealing not allowed. More control, but less flexibility for the 

buffer manager è poor performance. 

Uncommitted changes might be on disk after crash… 

l  FORCE: 
l  The database system forces all the updates of a transaction to 

disk before committing 
l  Why ? 

l  To make its updates permanent before committing 
l  Why a problem ? 

l  Most probably random I/Os, so poor response time and throughput 
l  Interferes with the disk controlling policies 

l  NO FORCE: 
l  Don’t do the above. Desired. 
l  Problem:  

l  Guaranteeing durability becomes hard 
l  We might still have to force some pages to disk, but minimal. 

STEAL vs NO STEAL, FORCE vs NO FORCE 

Committed changes might NOT be on disk after crash… 



Force 

No Force 

No Steal Steal 

Desired 

Trivial 

STEAL vs NO STEAL, FORCE vs NO FORCE 

l  Only updates from committed transaction are written to 
disk (since no steal) 

l  Updates from a transaction are forced to disk before 
commit (since force) 
l  A minor problem: how do you guarantee that all updates from 

a transaction make it to the disk atomically ? 
l  Remember we are only guaranteed an atomic block write 
l  What if some updates make it to disk, and other don’t ? 

l  Can use something like shadow copying/shadow paging 

l  No atomicity/durability problems. 

What if NO STEAL, FORCE ? 



l  After crash: 
l  Disk might have DB data from uncommitted transactions 

l  Disk might not have DB data from committed transactions 

l  How to recover? 

 “Log-based recovery” 

What if STEAL, NO FORCE ? 

Log-based Recovery 
l  Most commonly used recovery method 
l  A log is a record of everything the database system does 

l  For every operation done by the database, a log record 
is generated and stored typically on a different (log) disk 
l  <T1, START>  
l  <T2, COMMIT> 
l  <T2, ABORT> 
l  <T1, A, 100, 200> 

l  T1 modified A; old value = 100, new value = 200 
 
 



Log 
l  Example transactions  T0 and T1 (T0 executes before T1): 

 T0:    read (A)     T1 : read (C) 
  A: - A - 50           C:-  C- 100 
  write (A)                        write (C) 
  read (B) 
  B:-  B + 50 
  write (B) 

l  Log: 

Log-based Recovery 
l  Assumptions:   

1.  Log records are immediately pushed to the disk as soon as they are 
generated 

2.  Log records are written to disk in the order generated 
3.  A log record is generated before the actual data value is updated 
4.  Strict two-phase locking 

l  The first assumption can be relaxed 
l  As a special case, a transaction is considered committed only after <T1, 

COMMIT> has been pushed to the disk 

l  Also: 
l  Log writes are sequential 
l  They are also typically on a different disk 

l  LFS == log-structured file system, and basis of journaling file 
systems 



Recovery 
STEAL is allowed, so changes of a transaction may have made it to the disk 

l  UNDO(T1): 
l  Procedure executed to rollback/undo the effects of a transaction 
l  E.g.  

l  <T1, START> 
l  <T1, A, 200, 300> 
l  <T1, B, 400, 300> 
l  <T1, A, 300, 200>           [[ note: second update of A ]] 
l  T1 decides to abort 

l  Any of the changes might have made it to the disk 

Using the log to abort/rollback 
l  UNDO(T1): 

l  Go backwards in the log looking for log records belonging to T1 
l  Restore the values to the old values 
l  NOTE: Going backwards is important. 

l  A was updated twice 
l  In the example, we simply: 

l  Restore A to 300 
l  Restore B to 400 
l  Restore A to 200 

l  Note: No other transaction could have changed A or B in the 
meantime 
l  Strict two-phase locking  



Using the log to recover 
l  We don’t require FORCE, so a change made by the committed 

transaction may not have made it to the disk before the system crashed 
l  BUT, the log record did (recall our assumptions) 

l  REDO(T1): 
l  Procedure executed to recover a committed transaction 
l  E.g. 

l  <T1, START> 
l  <T1, A, 200, 300> 
l  <T1, B, 400, 300> 
l  <T1, A, 300, 200>           [[ note: second update of A ]] 
l  <T1, COMMIT> 

l  By our assumptions, all the log records made it to the disk (since the 
transaction committed) 

l  But any or none of the changes to A or B might have made it to disk 

Using the log to recover 
l  REDO(T1): 

l  Go forwards in the log looking for log records belonging to T1 
l  Set the values to the new values 
l  NOTE: Going forwards is important. 
l  In the example, we simply: 

l  Set A to 300 
l  Set B to 300 
l  Set A to 200 



Idempotency 
l  Both redo and undo are required to idempotent 

l  F is idempotent, if F(x) = F(F(x)) = F(F(F(F(…F(x))))) 

l  Multiple applications shouldn’t change the effect 
l  This is important because we don’t know exactly what made it to 

the disk, and we can’t keep track of that 
l  E.g. consider a log record of the type  

l  <T1, A, incremented by 100> 
l  Old value was 200, and so new value was 300 

l  But the on disk value might be 200 or 300 (since we have no 
control over the buffer manager) 

l  So we have no idea whether to apply this log record or not 
l  Hence, value based logging is used (also called physical), not 

operation based (also called logical) 

Log-based recovery 
l  Log is maintained 

l  If during the normal processing, a transaction needs to 
abort 
l  UNDO() is used for that purpose 

l  If the system crashes, then we need to do recovery using 
both UNDO() and REDO() 
l  Some transactions that were going on at the time of crash may 

not have completed, and must be aborted/undone 
l  Some transactions may have committed, but their changes didn’t 

make it to disk, so they must be redone 
l  Called restart recovery 



Restart Recovery (after a crash) 
l  After restart, go backwards into the log, and make two lists 

l  How far ?? For now, assume till the beginning of the log. 

l  undo_list: A list of transactions that must be undone 
l  <Ti, START> record is in the log, but no <Ti, COMMIT> 

l  redo_list: A list of transactions that need to be redone 
l  Both <Ti, START>  and <Ti, COMMIT> records are in the log 

l  After that: 
l  UNDO all the transactions on the undo_list one by one 
l  REDO all the transaction on the redo_list one by one 
l  this is different than the recovery algorithm in 16.4 

Restart Recovery (after a crash) 
l  Must do the UNDOs first before REDO 

l  <T2, A, 10, 30> 
l  <T1, A, 10, 20> 
l  <T1, abort>           [[ so A was restored back to 10 ]] 
l  <T2, commit> 

l  If we do UNDO(T1) first, and then REDO(T2), it will be okay 
l  Trying to do other way around doesn’t work 



Checkpointing 
l  How far should we go back in the log while constructing redo and 

undo lists ?? 
l  It is possible that a transaction made an update at the very beginning of 

the system, and that update never made it to disk 
l  very very unlikely, but possible (because we don’t do force) 

l  For correctness, we have to go back all the way to the beginning of the 
log 

l  Bad idea !! 

l  Checkpointing is a mechanism to reduce this 

Checkpointing 
l  Periodically, the database system writes out everything in the 

memory to disk 
l  Goal is to get the database in a state that we know (not necessarily 

consistent state) 
l  Steps: 

l  Stop all other activity in the database system 
l  Write out the entire contents of the memory to the disk  

l  Only need to write updated pages, so not so bad 
l  Entire === all updates, whether committed or not 

l  Write out all the log records to the disk 
l  Write out a special log record to disk  

l  <CHECKPOINT LIST_OF_ACTIVE_TRANSACTIONS> 
l  The second component is the list of all active transactions in the system right 

now 
l  Continue with the transactions again 



Restart Recovery w/ checkpoints 
l  Key difference: Only need to go back till the last checkpoint 
l  Steps: 

l  undo_list: 
l  Go back till the checkpoint as before.  
l  Add all the transactions that were active at that time, and that didn’t commit

  
§  e.g. possible that a transactions started before the checkpoint, but didn’t finish till the 

crash 

l  redo_list:  
l  Similarly, go back till the checkpoint constructing the redo_list 
l  Add all the transactions that were active at that time, and that did commit 

l  Do UNDOs and REDOs as before  

Recap so far … 
l  Log-based recovery 

l  Uses a log to aid during recovery 

l  UNDO() 
l  Used for normal transaction abort/rollback, as well as during 

restart recovery 

l  REDO() 
l  Used during restart recovery  

l  Checkpoints 
l  Used to reduce the restart recovery time 



Other issues 
l  ARIES: Considered the canonical description of log-

based recovery 
l  Used in most systems 
l  Has many other types of log records that simplify recovery 

significantly 

l  Loss of disk: 
l  Can use a scheme similar to checkpointing to periodically dump 

the database onto tapes or optical storage 
l  Techniques exist for doing this while the transactions are 

executing (called fuzzy dumps) 

l  Shadow paging: 
l  Read up 

Recap 
l  STEAL vs NO STEAL, FORCE vs NO FORCE 

l  We studied how to do STEAL and NO FORCE through log-based 
recovery scheme 

Force 

No Force 

No Steal Steal 

Desired 

Trivial Force 

No Force 

No Steal Steal 

REDO 
UNDO 

UNDO 

REDO 



Write-ahead logging 
l  We assumed that log records are written to disk as soon as 

generated 
l  Too restrictive 

l  Write-ahead logging: 
l  Before an update on a data item (say A) makes it to disk, the log 

records referring to the update must be forced to disk 
l  How ? 

l  Each log record has a log sequence number (LSN) 
§  Monotonically increasing 

l  For each page in the memory, we maintain the LSN of the last log record 
that updated a record on this page 
§  pageLSN 

l  If a page P is to be written to disk, all the log records till pageLSN(P) are 
forced to disk 

 

Write-ahead logging 

l  Write-ahead logging (WAL) is sufficient 
for all our purposes 
l  All the algorithms discussed before work 

l  Note the special case:  
l  A transaction is not considered committed, 

unless the <T, commit> record is on disk 



Other issues 
l  The system halts during checkpointing 

l  Not acceptable 
l  Advanced recovery techniques allow the system to continue 

processing while checkpointing is going on 

l  System may crash during recovery 
l  Our simple protocol is actually fine 
l  In general, this can be painful to handle 

l  B+-Tree and other indexing techniques 
l  Strict 2PL is typically not followed (we didn’t cover this) 
l  So physical logging is not sufficient; must have logical logging 

l  Read 16.7 if interested. 

Recap 

l  ACID Properties 
l  Atomicity and Durability : 

l  Logs, undo(), redo(), WAL etc 

l  Consistency and Isolation: 
l  Concurrency schemes 

l  Strong interactions: 
l  We had to assume Strict 2PL for proving correctness 

of recovery 

 


