
Cloud Storage – A look at 
Amazon’s Dyanmo

A presentation that look’s at Amazon’s Dynamo service (based 
on a research paper published by Amazon.com) as well as 

related cloud storage implementations



The Traditional

n Cloud Data Services are traditionally oriented around 
Relational Database systems

n Oracle, Microsoft SQL Server and even MySQL have traditionally powered enterprise 
and online data clouds

n Clustered - Traditional Enterprise RDBMS provide the ability to cluster and replicate 
data over multiple servers – providing reliability

n Highly Available – Provide Synchronization (“Always Consistent”), Load-Balancing 
and High-Availability features to provide nearly 100% Service Uptime

n Structured Querying – Allow for complex data models and structured querying – It is 
possible to off-load much of data processing and manipulation to the back-end 
database



The Traditional

n However, Traditional RDBMS clouds are:

EXPENSIVE! 
To maintain, license and store large amounts of data

n The service guarantees of traditional enterprise relational databases like Oracle, 
put high overheads on the cloud

n Complex data models make the cloud more expensive to maintain, update and 
keep synchronized

n Load distribution often requires expensive networking equipment
n To maintain the “elasticity” of the cloud, often requires expensive upgrades to 

the network



The Solution

n Downgrade some of the service guarantees of 
traditional RDBMS

n Replace the highly complex data models Oracle and SQL Server offer, with a simpler 
one – This means classifying service data models based on the complexity of the data 
model they may required

n Replace the “Always Consistent” guarantee synchronization model with an “Eventually 
Consistent” model – This means classifying services based on how “updated” its data 
set must be

 Redesign or distinguish between services that require a simpler data 
model and lower expectations on consistency.
We could then offer something different from traditional RDBMS!



The Solution
n Amazon’s Dynamo – Used by Amazon’s EC2 Cloud Hosting Service. Powers 

their Elastic Storage Service called S2 as well as their E-commerce platform

 Offers a simple Primary-key based data model. Stores vast amounts of information on 
distributed, low-cost virtualized nodes

n Google’s BigTable – Google’s principle data cloud, for their services – Uses a 
more complex column-family data model compared to Dynamo, yet much simpler than 
traditional RMDBS

Google’s underlying file-system provides the distributed architecture on low-cost nodes

n Facebook’s Cassandra – Facebook’s principle data cloud, for their services. 

This project was recently open-sourced. Provides a data-model similar to Google’s 
BigTable, but the distributed characteristics of Amazon’s Dynamo



Dynamo - Motivation

n Build a distributed storage system:
n Scale
n Simple: key-value
n Highly available
n Guarantee Service Level Agreements (SLA)



System Assumptions and Requirements

n Query Model: simple read and write operations to a data 
item that is uniquely identified by a key.

n ACID Properties: Atomicity, Consistency, Isolation, 
Durability.

n Efficiency: latency requirements which are in general 
measured at the 99.9th percentile of the distribution.

n Other Assumptions: operation environment is assumed 
to be non-hostile and there are no security related requirements 
such as authentication and authorization.



Service Level Agreements (SLA)

n Application can deliver its 
functionality in abounded 
time: Every dependency in the 
platform needs to deliver its 
functionality with even tighter 
bounds.

n Example: service guaranteeing 
that it will provide a response within 
300ms for 99.9% of its requests for a 
peak client load of 500 requests per 
second.

The picture can't be displayed.

Service-oriented architecture of 
Amazon’s platform



Design Consideration

n Sacrifice strong consistency for availability
n Conflict resolution is executed during read 

instead of write, i.e. “always writeable”.
n Other principles:

n Incremental scalability.
n Symmetry.
n Decentralization.
n Heterogeneity.



Summary of techniques used in Dynamo 
and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes Vector clocks with reconciliation 
during reads

Version size is decoupled from 
update rates.

Handling temporary failures Sloppy Quorum and hinted handoff Provides high availability and 
durability guarantee when some of 

the replicas are not available.

Recovering from permanent 
failures Anti-entropy using Merkle trees Synchronizes divergent replicas in 

the background.

Membership and failure detection Gossip-based membership protocol 
and failure detection.

Preserves symmetry and avoids 
having a centralized registry for 
storing membership and node 

liveness information.



Partition Algorithm

n Consistent hashing: the output 
range of a hash function is treated as a 
fixed circular space or “ring”.
n No finger tables
n Each node knows complete 

assignment è no network routing

n ”Virtual Nodes”: Each node can 
be responsible for more than one 
virtual node.

The picture can't be displayed.



Advantages of using virtual nodes
n If a node becomes unavailable the 

load handled by this node is evenly 
dispersed across the remaining 
available nodes.

n When a node becomes available 
again, the newly available node 
accepts a roughly equivalent 
amount of load from each of the 
other available nodes.

n The number of virtual nodes that a 
node is responsible can decided 
based on its capacity, accounting 
for heterogeneity in the physical 
infrastructure.

The picture can't be displayed.



Replication

n Each data item is 
replicated at N hosts.

n “preference list”: The list of 
nodes that is responsible 
for storing a particular key.

n Reconciliation only on 
reads 
n Easy if causally ordered
n Otherwise application 

handles

The picture can't be displayed.



Data Versioning

n A put() call may return to its caller before the 
update has been applied at all the replicas

n A get() call may return many versions of the 
same object.

n Challenge: an object having distinct version sub-histories, 
which the system will need to reconcile in the future.

n Solution: uses vector clocks in order to capture causality 
between different versions of the same object.



Vector Clock

n A vector clock is a list of (node, counter) 
pairs.

n Every version of every object is associated 
with one vector clock.

n If the counters on the first object’s clock are 
less-than-or-equal to all of the nodes in the 
second clock, then the first is an ancestor of 
the second and can be forgotten.



Vector clock example
The picture can't be displayed.



Execution of get () and put () 
operations

1. Route its request through a generic load 
balancer that will select a node based on 
load information.

2. Use a partition-aware client library that 
routes requests directly to the appropriate 
coordinator nodes.



Sloppy Quorum

n R/W is the minimum number of (healthy) 
nodes that must participate in a successful 
read/write operation.

n Setting R + W > N yields a quorum-like 
system.
n Typically R=W=2 and N=3

n In this model, the latency of a get (or put) 
operation is dictated by the slowest of the R 
(or W) replicas. For this reason, R and W are 
usually configured to be less than N, to 
provide better latency.



Hinted handoff

n Assume N = 3. When A 
is temporarily down or 
unreachable during a 
write, send replica to D.

n D is hinted that the 
replica is belong to A and 
it will deliver to A when A 
is recovered.

n Again: “always writeable”

The picture can't be displayed.



Other techniques

n Replica synchronization: 
n Merkle hash tree.

n Leaves are hashes of contents
n Parents are hashes of children

n Membership and Failure Detection: 
n Gossip



Implementation

n Java
n Local persistence component allows for 

different storage engines to be plugged in:
n Berkeley Database (BDB) Transactional Data 

Store: object of tens of kilobytes

n MySQL: object of > tens of kilobytes

n BDB Java Edition, etc.



Evaluation
The picture can't be displayed.

X axis 12 hour ticks



Evaluation

The picture can't be displayed.

Effect of buffering writes in memory
- writing to disk in batches; quicker read response
- loss of durability 
- coordinator chooses one replica to write durable write synchronous, 
others async



Critique

n Would’ve liked more discussion on calibrating 
R,W,N values 

n Testing partitioning with only S=30, N=3
n Table 2 lack of configuration details



Contributions

n Highly available, sacrifice consistency 
n For small (<1MB files)

n Always writeable
n Reliability 
n Service (customer) oriented architecture
n Sloppy quorum
n Combination of many techniques we 

previously discussed


