
Presenter:	Nethaniel Berhane

Outline
� What	is	Spanner?	/	Why	Spanner?
� Implementation
� External	Consistency
� Concurrency	Control
� Evaluation	of	Spanserver
� Latency,	Throughput,	Avaliability
� Related	Work	/	Future	Work
� Pros	and	Cons	/	Conclusions
� Questions



What is Spanner?
� Distributed	multiversion	database.

§ Supports	SQL	Queries	and	Transactions.
§ Semi-relation	data	model.

� Manages	shards	of	replicated	data	across	data	centres	
for	high	availability.

� Features:
§ Replication	can	be	controlled	by	clients	for	load	
balancing	and	failure	responses.

§ Provides	externally	consistent	reads	and	writes.
§ Provides	globally	consistent	reads.

Why Spanner ?
Google’s	Previous	Works:

Bigtable	(2008):	wide-column,	key-value	NoSQL	database	service

� Google	received	complaints	for	its	performance	in	applications	requiring	strong	
consistency	guarantees	for	geo-replicated	sites.

� It	is	also	difficult	to	use	for	complex,	evolving	schemas.

Megastore	(2011):	storage	system	developed	to	meet	requirements	of	today’s	
interactive	online	services

� It	supports	synchronous	replication	by	providing	a	semi-relational	data	model.
� But	it	offers	low	consistency	across	global	data	replication	and	had	poor	write	

throughput



Implementation

Spanner server organization
Universe :	Deploys	Spanner
Zones :	Defines	locations	across	which	data	can	be	replicated.	
It	is	unit	of	physical	isolation.
Zone	master:	Assigns	data	to	spanserver
Spanserver:		Serve	data	to	clients
Placement driver:	Automatically	migrates	data.



Spanner software stack
Tablet:	Each	spanserver	has	100’s	of	
instances	of		key-value	data	structure		
called	tablet.
(Key:string,timestamp:int64)	->string
Colossus:	The	state	of	the	tablet	is	
stored	in	B-Tree	like	files	
Replication:
1)	Paxos	state	machine	is	used	to	
maintain	consistent	replicated	
mappings	within	a	Paxos	group.	The	
Writes	will	initiate	it	at	its	leader	and	
Reads	can	access	any	of	the	tablet.
2)	Between	Paxos	group	transaction	
manager	will	enforce	two	phase	
commit	for	distributed	transaction;	
with	one	Paxos	leader	being	the	
coordinator	and	other	leaders	under	
it.



Consensus Protocol
� Paxos:

� The	client	sends	request	
to	the	proposer	(leader).

� Proposer	send	prepare	
request		to	group	of	
acceptors.

� Acceptors	will	promise	
the	proposer	if	it	has	not	
received	values	higher	
than	the	proposer.

� If	proposer	got	enough	
promise	from	acceptors	it	
will	send	accept	request

� If	the	acceptor	accepts	as	
it	has	not	received	any	
higher	bids,	the	learners	
will	notify	clients.

Directories
� Directories:	

� Set	of	contiguous	keys	that	share	a	common	prefix
� Unit	of	data	placement
� For	load-balancing	support	for	Movedir	operation



Data Model
� Semi-relational	tables	to	support	

Query	language	and	Transactions.

UID Email

1 XXX

UID Albums

1 Album1

1 Album2

1 Album3

External Consistency
� External	consistency	is	equivalent	to	linearizability	in	
which	the	commit	order	adheres	to	global	clock.	

� Property:	If	a	transaction	T1	commits	before	another	
transaction	T2	starts,	then	T1’s	timestamp		is	smaller	
than	T2’s.

� Enabler:	True	time	API	provides	interval	based	global	
time	to	establish	the	above	property.

� Application:	This	helps	to	implement	lock	free	
distributed	read	transactions.



True Time
� Global	wall	clock	time	with	bounded	uncertainty.

TT.now()

2*ε

earliest latest

time

1)	For	any	invocation		of	
TT.now(),	tt.earliest <	tabs
(e)	<	tt.latest.
2)	TT.after(t)	will	return	true	
if	t		>	tt.latest.
3)	TT.before(t)	will	return	
true	if	t	<	tt.earliest.
4)	ε	is	the	average	error	
bound.

Datacenter	1

GPS	
timemaster

M1

Compute	reference	[earliest,	latest]	=	now	± ε
now	=	reference	now	+	local-clock	offset
ε	=	reference	ε	+	worst-case	local-clock	drift

(the	worst	case	for	when	a	clock	does	not	run	at	
exactly	the	same	rate	as	a	reference	clock)

True Time Architecture

M3

Datacenter	2

GPS	
timemaster

M1 M2 M3
Datacenter	3

GPS	
timemaster

M1 M2 M3
M2



Concurrency Control

Timestamps for RW transaction
� Read-write	transaction	use	two	phase	commit.
� Let	start,	commit	request,	and	commit	events	be	ei start,		
ei server,	and	ei commit	 ;	and	the	commit	timestamp	of	

transaction	Ti	by	timestamp	Si
Invariant:		if	tabs(e1 commit)	<	tabs(e2 start),	then	timestamp	
S1	<	S2

� Start:	Coordinator	leader		for	write	Ti	assigns	timestamp	Si	no	
less	than	TT.now().latest,	computed	after	event	ei server.

� Commit	wait:		Coordinator	leader	ensures	clients	can't	see	
data	committed	by	Ti	before	TT.after(Si)	is	true.



Serving reads at a timestamp
� Each	replica	tracks	safe	time	t	safe,	which	is	the	maximum	
timestamp	at		which	it	is	up	to	date.	Replica	can	read	at	t

if	t	<=	t	safe
� t	safe	=	min(tPaxos-safe,	tTM-safe)	
� tPaxos-safe =	Maximum	write	timestamp	by	Paxos.	Paxos	write	
times	increase	monotonically,	so	writes	will	not	occur	at	or	
below	tPaxos-safe

� tTM-safe =	Transaction	manager	safe	time.	Its	value	is	infinity	
if	there	are	no	prepared	transactions.	Else	it	will	be	the	
minimum	of	the	lower	bound	on	prepared	transaction	
timestamp.

Timestamp for RO transaction
� To	execute	a	read-only	transaction,	pick	timestamp	Sread,	
then	execute	as	snapshot	reads	at	Sread at	sufficiently	up	to	
date	replicas.

� Picking	TT.now().latest	after	the	transaction	start	will	
definitely	preserve	external	consistency,	but	may	block	for	
unnecessarily	long	amounts	of	time	while	waiting	for	tsafe to	
advance.

� Choose	the	oldest	timestamp	that	preserves	external	
consistency:	LastTS().



Paxos leader Management
� Spanner's	Paxos	implementation	used	timed	(10	second)	leader	leases	

to	make	leadership	long	lived	
� Candidate	becomes	leader	after	receiving	quorum	of	timed	lease	votes.	
� The	current	leader	will	send	request	for	extension	before	its	lease	ends.
� Each	replica	r	grants	a	lease	time	at	e(Grant)	which	happens	after		it	

receives	lease	request	e(Receive).	The	lease	ends	at		te =	TT.now().latest	
+	lease_length;	it	is	computed	after	every	lease	request	e(Receive).

� The	replica	will	not	grant	another	lease	until	TT.after(te)	is	true.
� So	any	other	potential	leaders	e(Send)	+	lease_length <	e(Receive)	

+lease_length
� Shorter	lease	time	will	increase	lease-renewal	traffic.

Read Write transactions
� Client	issues	reads	to	leader	replicas	of	appropriate	groups.	These	

acquire	read	locks	and	read	the	most	recent	data.
� Once	reads	are	completed	and	writes	are	buffered	(at	the	client),	client	

chooses	a	coordinator	leader	and	sends	the	identity	of	the	leader	along	
with	buffered	writes	to	participant	leaders.

� Non-coordinator	participant	leaders:
q Acquire	write	locks
q Choose	a	prepare	timestamp	larger	than	any	previous	transaction	

timestamp’s	logs	and	prepare	a	record	in	Paxos.
q Notify	coordinator	of	chosen	timestamp.



� Coordinator	leader
q Acquires	locks
q Picks	a	commit	timestamp	s	greater	

than	TT.now().latest,	greater	than	
or	equal	to	all	participant	prepared	
timestamps,	and	greater	than	any	
previous	transaction	timestamps	
assigned	by	the	leader.

q Logs	will	commit	record	in	
Paxos	and	waits	until	TT.after(s)	
to	allow	replicas	to	commit	T	
and	obeys	commit	wait.

q Send	timestamp	to	all	
participants	and	they	will	
release	the	locks.

q After	the	required	waits,	the	
locally	assigned	timestamps	are	
guaranteed	to	agree	with	the	
wall-clock	(externalized	time)

Refinements
� Problem		1:	A		prepared	transaction	blocks	tTM-safe from	advancing.	What	if	

the	prepared	transactions	don't	conflict	with	the	read?
Solution:		Augment	tTM-safewith	mappings	from	key	ranges	to	these	
prepared	timestamps.	The	lock	table	will	do	a	fine-grained	block	on	the	
transactions		which	have	conflicts	with	the	mapped	keys	range.

� Problem	2:	LastTS()	also	faces	similar	problem	when	assigning	a	
timestamp	to	a	read-only
Solution:	- Similar	solution	of	fine	grained	safe	time	can	be	used.

� Problem3:		tPaxos-safe cannot	advance	without	Paxos	writes,	so	snapshots	
reads	at	t	cannot	proceed	at	groups	whose	last	Paxos	write	occurred	before	
tTM-safe.
Solution:	Paxos	leaders	instead	advance	tPaxos-safe by	keeping	track	of	the	
timestamp	above	for	which	future	Paxos	writes	will	occur.	Advances	occur	
every	8	seconds	by	default,	so	in	the	worst	case,	replicas	can	serve	reads	no	
more	recently	than	8	seconds	ago.



Evaluation of Spanserver
Spanserver	on	timeshared	machines

§ 4GB	RAM,	4	cores	(AMD	Barcelona	2200MHz)	
§ Clients	ran	on	separate	machines	
§ Clients	and	zones	are	very	near.	

Test	database	is	created	with	50	Paxos	groups,	2500	
directories,	operations	consisted	of	4KB	reads	and	
writes.

Latency and Throughput
� Latency	depends	on	slowest	quorum	machine.	As	replica	
increases,	the	latency	increases	as	there	are	more	replicas	
to	commit.	

� Read-only	transaction:	throughput	increases		as	the	
number	of	replicas	increases	since		there	are	more	span	
servers



Availability

Use of Spanner in F1
F1:
Google	advertising	backend	.	This	is	based	on	a	mySQL	
database	and	data	are	manually	sharded.

Spanner	was	chosen	because:	

§ Automatically	shard	data	
§ Provides	synchronous	replication	and	strong	
transactional	semantics.



Related Work
Some	the	related	work	upon	which	Spanner	is	built:

MegaStore:		It	provides	consistent	replication	across	data	centres.
DynamoDB:		It	presents	key-value	interface,		and	only	replicates	within		a	
region	

Scatter:	It	provides	Key-value	store	for	P2P	systems	
Walter:		It	provides	snapshot	isolation		within	data-centres.
Calvin:		It	collects	and	orders	transactions	thus	eliminates	lock	overhead.	
Granola:	Transaction	infrastructure	that	supports	specific	types	of	

transactions	to	avoid	locking	in	snapshot	isolation
Farsite:	It	derives	clock	uncertainty	related	to	trusted	clock	reference.

Future Work
� Adapt	and	enhance	the	Spanner	schema	language	.
� Automatic	load-based	resharding to	adapt	to	changes	
in	the	rate	of	data-flowing	through	stream.	

� Increase	performance	for	complex	queries	as	it	is	
based	on	key-value	access.

� Reduce	ε below	1ms	in	the	True	Time	API.



Opinions
Pros:
� Spanner	innovates	around	the	area	of	Time	to	improve	

performance	in:	External	consistency/linearizability,	Distributed	
databases,	Concurrency	control,	and	Replication.

� True	Time	API	allows	to	build	strong	transactional	semantics	in	
globally	distributed	environment.

Cons:
� Alternative	to	two-phase	commit	protocol	to	avoid	potential	

blocking	issues	and	performance	overheads?
� The	snapshots	are	not	cleaned

Questions?


