CMSC 412
PROJECT 0: PIPES

Minimum Requirements: None

TEST DISTRIBUTION

Public tests — 5 tests | 22 points
Release tests — | test | 5 points

Secret tests — 5 tests | 25 points

SYSTEM CALLS

* A system call is the programmatic way in which a computer program requests a service from the
kernel of the operating system it is executed on.

» Calling function(pipe, read, write) in an user executable(pipe-p|.c) will end up automatically calling its

corresponding system call (Sys_Pipe, Sys Read, Sys WVrite). Please note that binding of all system calls
is in src/libc/fileio.c

* Flow of Pipe Create:
Pipe-p |.c>fileio.c>syscall.c = pipe.c

PIPE SYSTEM CALL

A pipe is a system call that creates a unidirectional communication link between two file descriptors.
A file descriptor is a number that uniquely identifies an open file in a computer’s operating system.
int Pipe(int *fd_read, int *fd write) takes two arguments: each is a pointer to an integer location.

When Pipe returns successfully, it would have created a pipe and filled the two location with file
descriptors(integers), one pointing to the reading end of the pipe and the other to the writing end of the pipe

STRUCTS

+ Struct File in vfs.h
+ Struct FileOps in vfs.h

 Struct pipe: you need to create this one

PIPE_CREATE()

REFERRED TO AS PIPE() IN PROJECT SPEC)

+ Two File double pointers (READ_FILE AND,WRITE_FILE) have been
passed to populate the file struct.

* Create new struct File instance using Malloc() or Allocate_File()
* Initialize necessary fields in the file struct.
* There are File_Ops defined in the pipe.c file.

* Need to have your own pipe struct to hold data and other variables of
importance (as per your judgement).

* The data buffer could be a fixed 32K or dynamically allocated buffer.
« Use fsData(void*) in file to point to the instance of your pipe struct
* Check for appropriate error conditions wherever necessary.

« Return O if successful

pipe(&cr, &w) retums r=3, w=4

struct User Context

11123 |4]|5

AN

struct File struct File

ops = readPipeOps ops = writePipeOps

fsData fsData
struct Pipe

readers = 1 | writers = 1

pointer to data butfer

Y
buftered
data

SYS_PIPE()

» This is what is called when Pipe() command is executed in the test files (user mode)
* Create the pipe (call Pipe_Create()).

« Add files to the descriptor table.

* Look at add_file to_ descriptor_table function.

« Use Copy_To_User(ulong_t destlnUser, const void *srclnKernel, ulong_t bufSize) to copy the file
descriptors to the user addresses stored in the state registers (refer to geekos slides on how to use).

* Remember the addresses in the state registers are memory addresses in user space, the code you are
writing is in kernel space.

* Return 0 if successful, remember to check for error conditions through out this function.

TESTING

+ At this point, your code should be able to create a pipe.

* Try to run pipe-p| and it should pass the first assertion without any error.

PIPE_READ()

(REFERRED TO AS READ() IN PROJECT SPEC)

Goal: Reads data from the pipe into the buffer

Inputs: num_bytes you have to read from the pipe, a buffer to copy data into and a file struct pointer (File *f) which was
created in pipe_create.

Check for appropriate error conditions
pipe has writers but no data, return EWOULDBLOCK

Pipe has no writers and no data, return 0
Copy the data into the buffer (it s a void *)
E.g,You can use memcpy
* If there is data, Read() returns at most as much data as it was asked for.

* If there is not enough data, return as much data as the pipe have.

Delete the data from the pipe s buffer

(remove the data that user have just read out or mark the data you have read out as invalid)

Return number of bytes copied

PIPE_WRITE()

(REFERRED TO AS WRITE() IN PROJECT SPEC)

Goal: copy data from buffer into the pipe
Same params as Read(); buffer is the source.
Implement the buffer like a queue; write appends data, does NOT overwrite
If there is a reader and the pipe has space for data, pipe_Write() returns the number of bytes written.
Error conditions:
* No reader, return EPIPE

* If you choose to implement a fixed size buffer(suggested 32K)): if buffer is full, return O

* If you choose to implement dynamically allocated buffer: if malloc() fails, return ENOMEM

PIPE_CLOSE()

REFERRED TO AS CLOSE() IN PROJECT SPEC

* ldentify if function is called on the read side or the write side and then act appropriately by closing
the side on which it was called.

* Destroy data if there is no reader but there is still data.

* Pipe can also be destroyed if there are no readers and no writers.

VFS LAYER

HOW DOES USER’S READ CALLS PIPE_READ

* The call sequence from user is the following:

read()(src/user/pipe-pl.c)2interrupt, context switch->sys_read()(src/geekos/syscall.c)—
Read(src/geekos/vfs.c)=> Pipe_Read()(src/geekos/pipe.c)

* You may want to read over those function after context switch to help you debug your code.

 Pay attention to how file ops are used.

 Same routine for write and close.

TESTING

* We provided pipe-p|, pipe-p2, and pipe-p4 programs that you can execute in GeekOS
* Check src/usr/pipe-pl.c for the test details.

* You are encouraged to write your own test.

	CMSC 412�Project 0: Pipes
	Test distribution	
	System Calls
	Pipe System Call
	Structs
	Pipe_Create()�referred to as Pipe() in project spec)
	Sys_pipe()
	Testing
	Pipe_Read()�(referred to as Read() in project spec)
	Pipe_Write()�(referred to as Write() in project spec)
	Pipe_Close()�referred to as Close() in project spec
	VFS Layer�How does user’s read calls pipe_read
	Testing

